-
Notifications
You must be signed in to change notification settings - Fork 13
/
main.py
262 lines (203 loc) · 11.1 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import datetime
from jsonargparse import ArgumentParser, ActionParser, ActionConfigFile
import json
import random
import time
import os
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import util.misc as utils
from datasets.dataset import build as build_dataset
from datasets.dataset import get_args_parser as dataset_args_parser
from engine import evaluate, train_one_epoch
from models import build_model
from benchmark import eval as benchmark_eval
from benchmark import test as benchmark_test
from models.trtr import get_args_parser as trtr_args_parser
# for test
from models.tracker import build_tracker
from models.tracker import get_args_parser as tracker_args_parser
def get_args_parser():
parser = ArgumentParser('training')
# training
parser.add_argument('--device', default='cuda',
help='device to use for inference')
parser.add_argument('--output_dir', default='',
help='path where to save, empty for no saving')
parser.add_argument('--resume', default='',
help='resume from checkpoint')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--epochs', default=50, type=int)
parser.add_argument('--lr', default=1e-4, type=float,
help='learning rate for network excluding backbone')
parser.add_argument('--lr_backbone', default=1e-5, type=float,
help='learning rate for backbone, 0 to freeze backbone')
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--lr_drop', default=6, type=int)
parser.add_argument('--lr_gamma', default=0.5, type=float)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N')
# dataset
parser.add_argument('--num_workers', default=2, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
parser.add_argument('--model_save_step', default=50, type=int,
help='step to save model')
parser.add_argument('--benchmark_test_step', default=1, type=int,
help='step to test benchmark')
parser.add_argument('--benchmark_start_epoch', default=0, type=int,
help='epoch to start benchmark')
# Dataset
parser.add_argument('--dataset', action=ActionParser(parser=dataset_args_parser()))
# TrTr
parser.add_argument('--model', action=ActionParser(parser=trtr_args_parser()))
# yaml config file for all parameters
parser.add_argument('--cfg_file', action=ActionConfigFile)
return parser
def main(args):
utils.init_distributed_mode(args)
print("args: {}".format(args))
device = torch.device(args.device)
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
# special process to control whether freeze backbone
args.model.train_backbone = args.lr_backbone > 0
model, criterion, postprocessors = build_model(args.model)
model.to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of params:', n_parameters)
param_dicts = [
{"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" not in n and p.requires_grad]},
{
"params": [p for n, p in model_without_ddp.named_parameters() if "backbone" in n and p.requires_grad],
"lr": args.lr_backbone,
},
]
optimizer = torch.optim.AdamW(param_dicts, lr=args.lr,
weight_decay=args.weight_decay)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, args.lr_drop, gamma = args.lr_gamma)
dataset_train = build_dataset(image_set='train', args=args.dataset, model_stride = model_without_ddp.backbone.stride)
dataset_val = build_dataset(image_set='val', args=args.dataset, model_stride = model_without_ddp.backbone.stride)
if args.distributed:
sampler_train = DistributedSampler(dataset_train)
sampler_val = DistributedSampler(dataset_val, shuffle=False)
else:
sampler_train = torch.utils.data.RandomSampler(dataset_train)
sampler_val = torch.utils.data.SequentialSampler(dataset_val)
batch_sampler_train = torch.utils.data.BatchSampler(
sampler_train, args.batch_size, drop_last=True)
data_loader_train = DataLoader(dataset_train, batch_sampler=batch_sampler_train,
collate_fn=utils.collate_fn, num_workers=args.num_workers)
data_loader_val = DataLoader(dataset_val, args.batch_size, sampler=sampler_val,
drop_last=False, collate_fn=utils.collate_fn, num_workers=args.num_workers)
output_dir = Path(args.output_dir)
if args.resume:
if args.resume.startswith('https'):
checkpoint = torch.hub.load_state_dict_from_url(
args.resume, map_location='cpu', check_hash=True)
else:
checkpoint = torch.load(args.resume, map_location='cpu')
model_without_ddp.load_state_dict(checkpoint['model'])
if 'optimizer' in checkpoint and 'lr_scheduler' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
args.start_epoch = checkpoint['epoch'] + 1
benchmark_test_parser = benchmark_test.get_args_parser()
benchmark_test_args = benchmark_test_parser.get_defaults()
benchmark_test_args.tracker.model = args.model # overwrite the parameters about network model
benchmark_test_args.result_path = Path(os.path.join(args.output_dir, 'benchmark'))
benchmark_test_args.dataset_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'benchmark')
benchmark_eval_parser = benchmark_eval.get_args_parser()
benchmark_eval_args = benchmark_eval_parser.get_defaults()
benchmark_eval_args.tracker_path = benchmark_test_args.result_path
best_eao = 0
best_ar = [0, 10] # accuracy & robustness
print("Start training")
start_time = time.time()
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
sampler_train.set_epoch(epoch)
# training
train_stats = train_one_epoch(
model, criterion, data_loader_train, optimizer, device, epoch,
args.clip_max_norm)
lr_scheduler.step()
if args.output_dir:
checkpoint_paths = [output_dir / 'checkpoint.pth']
# extra checkpoint before LR drop and every args.model_save_step epochs
if (epoch + 1) % args.lr_drop == 0 or (epoch + 1) % args.model_save_step == 0:
checkpoint_paths.append(output_dir / f'checkpoint{epoch:04}.pth')
for checkpoint_path in checkpoint_paths:
utils.save_on_master({
'model': model_without_ddp.state_dict(),
'optimizer': optimizer.state_dict(),
'lr_scheduler': lr_scheduler.state_dict(),
'epoch': epoch,
'args': args,
}, checkpoint_path)
# hack: only inference model
utils.save_on_master({'model': model_without_ddp.state_dict()}, output_dir / 'checkpoint_only_inference.pth')
# evalute
val_stats = evaluate(model, criterion, postprocessors, data_loader_val, device, args.output_dir)
log_stats = {'epoch': epoch,
**{f'train_{k}': v for k, v in train_stats.items()},
**{f'val_{k}': v for k, v in val_stats.items()},
'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
f.write(json.dumps(log_stats) + "\n")
# evualute with benchmark
if utils.is_main_process():
if (epoch + 1) % args.benchmark_test_step == 0 and epoch > args.benchmark_start_epoch:
tracker = build_tracker(benchmark_test_args.tracker, model = model_without_ddp, postprocessors = postprocessors)
benchmark_test_args.model_name = "epoch" + str(epoch)
benchmark_start_time = time.time()
benchmark_test.main(benchmark_test_args, tracker)
benchmark_time = time.time() - benchmark_start_time
benchmark_eval_args.model_name = "epoch" + str(epoch)
benchmark_eval_args.tracker_prefix = "epoch" + str(epoch)
eval_results = benchmark_eval.main(benchmark_eval_args)
eval_result = list(eval_results.values())[0]
if benchmark_test_args.dataset in ['VOT2018', 'VOT2019']:
if args.output_dir:
with (output_dir / str("benchmark_" + benchmark_test_args.dataset + ".txt")).open("a") as f:
f.write("epoch: " + str(epoch) + ", best EAO: " + str(best_eao) + ", " + json.dumps(eval_result) + "\n")
if best_eao < eval_result['EAO']:
best_eao = eval_result['EAO']
if args.output_dir:
best_eao_int = int(best_eao*1000)
# record: only inference model
utils.save_on_master({'model': model_without_ddp.state_dict()}, output_dir / f'checkpoint{epoch:04}_best_eao_{best_eao_int:03}_only_inference.pth')
if best_ar[0] < eval_result['accuracy'] and best_ar[1] > eval_result['robustness']:
best_ar[0] = eval_result['accuracy']
best_ar[1] = eval_result['robustness']
if args.output_dir:
best_accuracy_int = int(best_ar[0]*1000)
best_robustness_int = int(best_ar[1]*1000)
# record: only inference model
utils.save_on_master({'model': model_without_ddp.state_dict()}, output_dir / f'checkpoint{epoch:04}_best_ar_{best_accuracy_int:03}_{best_robustness_int:03}_only_inference.pth')
print("benchmark time: {}".format(benchmark_time))
if args.distributed:
torch.distributed.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
print('Training time {}'.format(total_time_str))
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)