forked from tomasalex/aerosol
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Utils.py
241 lines (198 loc) · 7.92 KB
/
Utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import Aod
import datetime
import numpy as np
import math
from statistics import mean,stdev
from scipy.stats import linregress
# from main import aodvalues, monthYears
#from scipy.ndimage.measurements import variance
def load_data(aodcol):
dir = "./CALIPSO_data/Total_AOD/"
files = os.listdir(dir)
files.sort()
monthYears = []
aodvalues = []
AodToDouble = []
for file in files:
if file.endswith(".txt"):
with open(dir + file) as f:
data = f.read()
# parse filename and take month and year
p = file.split('-')
monthYears.append(p[0].split('_')[3] + '-' + p[1].split('.')[0])
data = data.split('\n')
for i in range(1, len(data) - 1):
linesplit = data[i].split('\t')
rows = linesplit[0]
cols = rows.split(' ')
Latitude = cols[0]
Longitude = cols[1]
AOD_12 = cols[aodcol]
AOD_030 = cols[2]
Number_of_profiles = cols[6]
Utilized_profiles = cols[7]
month = int(p[0].split('_')[3])
year = int(p[1].split('.')[0])
aod_element = Aod.AOD(Latitude, Longitude, AOD_12, AOD_030, Number_of_profiles, Utilized_profiles, month, year)
# aod_element.displayAOD()
aodvalues.append(aod_element)
# tom_index = next(index for (index, d) in enumerate(aodvalues) if d["name"] == "Tom")
return aodvalues, monthYears
def aodPerMonthGraph(aodvalues):
AodToDouble = []
plotVal = []
xdates = []
for j in range(2007, 2014):
k = 0
n = 0
for i in range(1, 12):
for element in aodvalues:
if element.getYear() == j and element.getMonth() == i and float(element.getAod()) >= 0:
k += float(element.getAod())
n += 1
# print element.displayAOD()
AodToDouble.append(str(i) + "_" + str(j) + "_" + str(float(k / n)))
plotVal.append(float(k / n))
xdates.append(datetime.datetime(j, i, 5))
return plotVal, xdates, AodToDouble
def aodDeseasonalisation(aodvalues, AodToDouble):
plotVal = []
xdates = []
for j in range(2007, 2014):
k = 0
n = 0
for i in range(1, 12):
content = [x for x in AodToDouble if x.startswith(str(i) + '_' + str(j))]
for element in aodvalues:
if element.getYear() == j and element.getMonth() == i and float(element.getAod()) >= 0:
k += float(element.getAod())
n += 1
# print element.displayAOD()
monthMean = content[0].split('_')[2]
plotVal.append(float(k / n) - float(monthMean))
xdates.append(datetime.datetime(j, i, 5))
return plotVal, xdates
# l = filter(lambda x: str(i) + '_' + str(j) in x, AodToDouble)
# ll = [s for s in AodToDouble if str(i) + '_' + str(j) in s]
# lll = any(item.startswith(str(i) + '_' + str(j)) for item in AodToDouble)
# [s for s in AodToDouble if str(i) + '_' + str(j) in s]
def getStat(aodvalues):
aods=[]
aodpercent=[]
nan=0
zerovals=0
for e in aodvalues:
if isfloat(e.aod_12):
aods.append(float(e.aod_12))
if float(e.aod_12)==0:
zerovals+=1
if float(e.aod_030)>0 :
aodpercent.append(float(e.aod_12)/float(e.aod_030))
if e.aod_12=='NaN':
nan+=1
m=mean(aods)
s=stdev(aods)
mp=mean(aodpercent)
sp=stdev(aodpercent)
return m,s,mp,sp,nan,zerovals
def getLats(aodvalues):
allLats = []
for el in aodvalues:
if el.latitude not in allLats:
allLats.append(el.latitude)
allLongs = []
for el in aodvalues:
if el.longitude not in allLongs:
allLongs.append(el.longitude)
return allLats, allLongs
def GetPeriodData(period, aodvalues, allLats, allLongs):
data = np.ndarray((len(allLats), len(allLongs)))
i = -1
for lati in allLats:
i += 1
j = -1
for longi in allLongs:
j += 1
AODSum = 0
aodcounter = 0
for e in aodvalues:
if e.latitude == lati and e.longitude == longi and e.month in period and float(e.aod_12) > 0:
aodcounter += 1
AODSum += float(e.aod_12)
if aodcounter > 0:
data[i][j] = AODSum / aodcounter
return data
def isfloat(value):
try:
float(value)
if not math.isnan(float(value)):
return True
except ValueError:
return False
def GetPeriodData_v2(period, aodvalues, allLats, allLongs, rejectzeros=True, uprof=0):
data = np.zeros((len(allLats), len(allLongs)))
counters = np.zeros((len(allLats), len(allLongs)))
countzeros = np.zeros((len(allLats), len(allLongs)))
for e in aodvalues:
i=allLats.index(e.latitude)
j=allLongs.index(e.longitude)
if not rejectzeros :
numcheck=isfloat(e.aod_12)
if float(e.aod_12)<0.000000000000000001 :
countzeros[i][j]+=1
else :
numcheck=False
if isfloat(e.aod_12):
if float(e.aod_12)>0.0 :
numcheck=True
if e.uprofiles.isdigit():
uprofcheck=(int(e.uprofiles)>=uprof)
else :
uprofcheck=False
if e.month in period and numcheck and uprofcheck :
data[i][j]+=float(e.aod_12)
counters[i][j] += 1
#elif not isfloat(e.aod_12):
# print 'NAN value ',e.aod_12,' for ', e.month,' ',e.year, ' at ', allLats[i], allLongs[j]
#if float(e.aod_12)>0.1:
# print 'Big value ',e.aod_12,' for ', e.month,' ',e.year, ' at ', allLats[i], allLongs[j]
for ind, x in np.ndenumerate(data) :
if data[ind[0]][ind[1]]<0.00000000000000001 :
print 'zero aod for period ', period, ' at ', allLats[ind[0]], allLongs[ind[1]]
if counters[ind[0]][ind[1]]>0 :
data[ind[0]][ind[1]] /= counters[ind[0]][ind[1]]
else :
print 'Only NAN values for period ', period, ' at ', allLats[ind[0]], allLongs[ind[1]]
#if countzeros[ind[0]][ind[1]]>0 :
# print 'num of zero values for period ', period, ' at ', allLats[ind[0]], allLongs[ind[1]], ' : ', countzeros[ind[0]][ind[1]]
return data
def GetDeseasonalizedData(period, aodvalues, allLats, allLongs, months, meanAOD, rejectzeros=True, uprof=0):
mlist=[]
for m in months:
if int(m.split('-')[0]) in period:
mlist.append(m.split('-')[1]+m.split('-')[0])
mlist.sort()
data = np.zeros((len(allLats), len(allLongs), len(mlist)))
slopedata = np.zeros((len(allLats), len(allLongs)))
interceptdata = np.zeros((len(allLats), len(allLongs)))
for e in aodvalues:
i=allLats.index(e.latitude)
j=allLongs.index(e.longitude)
if not rejectzeros :
numcheck=isfloat(e.aod_12)
else :
numcheck=False
if isfloat(e.aod_12):
if float(e.aod_12)>0.0 :
numcheck=True
if e.month in period and numcheck and int(e.uprofiles)>=uprof:
k=mlist.index(str(e.year)+str(e.month).zfill(2))
if meanAOD[i][j]>0 :
data[i][j][k]=(float(e.aod_12)-meanAOD[i][j])/meanAOD[i][j]*100
x = np.arange(0,len(mlist))
for ind, e in np.ndenumerate(data[:,:,-1]) :
slope, intercept, r_value, p_value, std_err = linregress(x,data[ind[0]][ind[1]])
slopedata[ind[0]][ind[1]]=slope
interceptdata[ind[0]][ind[1]]=intercept
return slopedata, interceptdata, data