-
Notifications
You must be signed in to change notification settings - Fork 11
/
dct_low_pass_filter.py
275 lines (189 loc) · 8.26 KB
/
dct_low_pass_filter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
#####################################################################
# Example : perform low pass filterings in DCT space of image frame
# from a video file specified on the command line (e.g. python FILE.py
# video_file) or from an attached web camera
# Author : Toby Breckon, [email protected]
# Copyright (c) 2015 School of Engineering & Computing Science,
# Copyright (c) 2019 Dept Computer Science,
# Durham University, UK
# License : LGPL - http://www.gnu.org/licenses/lgpl.html
#####################################################################
import cv2
import argparse
import sys
import numpy as np
import math
#####################################################################
keep_processing = True
# parse command line arguments for camera ID or video file
parser = argparse.ArgumentParser(
description='Perform ' +
sys.argv[0] +
' example operation on incoming camera/video image')
parser.add_argument(
"-c",
"--camera_to_use",
type=int,
help="specify camera to use",
default=0)
parser.add_argument(
"-r",
"--rescale",
type=float,
help="rescale image by this factor",
default=1.0)
parser.add_argument(
'video_file',
metavar='video_file',
type=str,
nargs='?',
help='specify optional video file')
args = parser.parse_args()
#####################################################################
# create a simple low pass filter - DCT version (top left corner)
def create_low_pass_filter(width, height, radius):
lp_filter = np.zeros((height, width), np.float32)
cv2.circle(lp_filter, (0, 0), radius, (1, 1, 1), thickness=-1)
return lp_filter
#####################################################################
# "Currently dct supports even-size arrays (2, 4, 6 ...). For data
# analysis and approximation, you can pad the array when necessary.
# Also, the function performance depends very much, and not
# monotonically, on the array size (see getOptimalDFTSize() ). In the
# current implementation DCT of a vector of size N is calculated
# via DFT of a vector of size N/2 . Thus, the optimal DCT
# size N1 >= N can be calculated as:" - OpenCV manual 3.0
def get_optimal_dct_size(n):
return (2 * cv2.getOptimalDFTSize(math.floor((n + 1) / 2)))
#####################################################################
# this function is called as a call-back everytime the trackbar is moved
# (here we just do nothing)
def nothing(x):
pass
#####################################################################
# define video capture object
try:
# to use a non-buffered camera stream (via a separate thread)
if not (args.video_file):
import camera_stream
cap = camera_stream.CameraVideoStream(use_tapi=False)
else:
cap = cv2.VideoCapture() # not needed for video files
except BaseException:
# if not then just use OpenCV default
print("INFO: camera_stream class not found - camera input may be buffered")
cap = cv2.VideoCapture()
# define display window name
window_name = "Live Camera Input" # window name
window_name2 = "DCT Co-efficients Spectrum" # window name
window_name3 = "Filtered Image" # window name
# if command line arguments are provided try to read video_file
# otherwise default to capture from attached H/W camera
if (((args.video_file) and (cap.open(str(args.video_file))))
or (cap.open(args.camera_to_use))):
# create windows by name (as resizable)
cv2.namedWindow(window_name, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_name2, cv2.WINDOW_NORMAL)
cv2.namedWindow(window_name3, cv2.WINDOW_NORMAL)
# if video file or camera successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read()
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(frame, (0, 0), fx=args.rescale, fy=args.rescale)
# convert to grayscale
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# use this single frame to set up optimized DFT settings
height, width = gray_frame.shape
nheight = get_optimal_dct_size(height)
nwidth = get_optimal_dct_size(width)
# add some track bar controllers for settings
radius = 25
cv2.createTrackbar(
"radius", window_name2, radius, max(
nheight, nwidth) * 2, nothing)
while (keep_processing):
# if video file or camera successfully open then read frame from video
if (cap.isOpened):
ret, frame = cap.read()
# when we reach the end of the video (file) exit cleanly
if (ret == 0):
keep_processing = False
continue
# rescale if specified
if (args.rescale != 1.0):
frame = cv2.resize(
frame, (0, 0), fx=args.rescale, fy=args.rescale)
# start a timer (to see how long processing and display takes)
start_t = cv2.getTickCount()
# convert to grayscale
gray_frame = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
# Performance of DCT calculation, via the DFT/FFT, is better for array
# sizes of power of two. Arrays whose size is a product of 2's, 3's,
# and 5's are also processed quite efficiently.
# Hence we modify the size of the array tothe optimal size (by padding
# zeros) before finding DCT.
pad_right = nwidth - width
pad_bottom = nheight - height
nframe = cv2.copyMakeBorder(
gray_frame,
0,
pad_bottom,
0,
pad_right,
cv2.BORDER_CONSTANT,
value=0)
# perform the DCT
dct = cv2.dct(np.float32(nframe))
# perform low pass filtering
radius = cv2.getTrackbarPos("radius", window_name2)
lp_filter = create_low_pass_filter(nwidth, nheight, radius)
dct_filtered = cv2.multiply(dct, lp_filter)
# recover the original image via the inverse DCT
filtered_img = cv2.dct(dct_filtered, flags=cv2.DCT_INVERSE)
# normalized the filtered image into 0 -> 255 (8-bit grayscale) so we
# can see the output
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(filtered_img)
filtered_img_normalized = filtered_img * \
(1.0 / (max_val - min_val)) + ((-min_val) / (max_val - min_val))
filtered_img_normalized = np.uint8(filtered_img_normalized * 255)
# calculate the DCT spectrum for visualization
# create a 8-bit image to put the magnitude spectrum into
dct_spectrum_normalized = np.zeros((nheight, nwidth, 1), np.uint8)
# normalized the magnitude spectrum into 0 -> 255 (8-bit grayscale) so
# we can see the output
cv2.normalize(
np.uint8(dct_filtered),
dct_spectrum_normalized,
alpha=0,
beta=255,
norm_type=cv2.NORM_MINMAX)
# display images
cv2.imshow(window_name, gray_frame)
cv2.imshow(window_name2, dct_spectrum_normalized)
cv2.imshow(window_name3, filtered_img_normalized)
# stop timer and convert to ms. (to see how long processing and display
# takes)
stop_t = ((cv2.getTickCount() - start_t) /
cv2.getTickFrequency()) * 1000
# start the event loop - essential
# cv2.waitKey() is a keyboard binding function (argument is the time in
# ms). It waits for specified milliseconds for any keyboard event.
# If you press any key in that time, the program continues.
# If 0 is passed, it waits indefinitely for a key stroke.
# (bitwise and with 0xFF to extract least significant byte of
# multi-byte response)
# here we use a wait time in ms. that takes account of processing time
# already used in the loop
# wait 40ms (i.e. 1000ms / 25 fps = 40 ms)
key = cv2.waitKey(max(2, 40 - int(math.ceil(stop_t)))) & 0xFF
# It can also be set to detect specific key strokes by recording which
# key is pressed
# e.g. if user presses "x" then exit
if (key == ord('x')):
keep_processing = False
# close all windows
cv2.destroyAllWindows()
else:
print("No video file specified or camera connected.")
#####################################################################