forked from joshnicholas/trends
-
Notifications
You must be signed in to change notification settings - Fork 0
/
abc_pop.py
42 lines (31 loc) · 1.18 KB
/
abc_pop.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import requests
import pandas as pd
from bs4 import BeautifulSoup as bs
import pytz
import datetime
csv_path = 'data/abc_pop.csv'
old_df = pd.read_csv(csv_path)
utc_now = pytz.utc.localize(datetime.datetime.utcnow())
brissie = utc_now.astimezone(pytz.timezone("Australia/Brisbane"))
bris_reverse_date = brissie.strftime('%Y-%m-%d')
bris_hour = brissie.strftime('%H')
r = requests.get("https://www.abc.net.au/news/")
soup = bs(r.text, 'html.parser')
div = soup.find("div", {"data-component":"MostPopularStories"})
items = div.find_all("a", {"data-component":"Link"})
items = [{"ABC most viewed":f"{x.text.strip()}"} for x in items]
df = pd.DataFrame(items)
df = df.T.reset_index()
headers = [f"{x}" for x in range(0,5)]
headers.insert(0, "What")
df.columns = headers
df['Date'] = bris_reverse_date
df['Hour'] = bris_hour
old_df = old_df.append(df)
old_df['Hour'] = old_df['Hour'].astype(str)
old_df['Date'] = old_df['Date'].astype(str)
old_df['Hour'] = old_df['Hour'].apply(lambda x: '0' + x if len(x) < 2 else x)
old_df = old_df.drop_duplicates(subset=["Date", "Hour"])
old_df = old_df.sort_values(by=["Date", "Hour"], ascending=True)
with open(csv_path, "w") as f:
old_df.to_csv(f, index=False)