-
Notifications
You must be signed in to change notification settings - Fork 28
/
index.html
493 lines (329 loc) · 8.22 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
<!DOCTYPE html>
<html>
<head>
<title>Introduction to scikit-learn: Machine Learning in Python</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
<link rel="stylesheet" href="./assets/style.css">
<link rel="shortcut icon" type="image/x-icon" href="favicon.ico">
<link rel="stylesheet" href="./assets/katex.min.css">
<script src="./assets/katex.min.js"></script>
<script src="./assets/auto-render.min.js"></script>
</head>
<body>
<textarea id="source">title: Introduction to scikit-learn: Machine Learning in Python
use_katex: True
class: title-slide
# Introduction to scikit-learn: Machine Learning in Python
![](images/scikit-learn-logo-notext.png)
.larger[Thomas J. Fan]<br>
@thomasjpfan<br>
<a href="https://www.github.com/thomasjpfan" target="_blank"><span class="icon icon-github icon-left"></span></a>
<a href="https://www.twitter.com/thomasjpfan" target="_blank"><span class="icon icon-twitter"></span></a>
<a class="this-talk-link", href="https://github.com/thomasjpfan/ml-workshop-intro" target="_blank">
This workshop on Github: github.com/thomasjpfan/ml-workshop-intro</a>
???
## Links
- https://scikit-learn.org/stable/
- https://github.com/thomasjpfan/ml-workshop-intro
---
name: table-of-contents
class: title-slide, left
# Table of Contents
.g[
.g-6[
1. [Introduction to Machine Learning](#introduction)
1. [Supervised Learning](#supervised)
1. [Preprocessing](#preprocessing)
1. [Pipelines](#pipelines)
]
.g-6.g-center[
![](images/scikit-learn-logo-notext.png)
]
]
---
name: introduction
class: chapter-slide
# 1. Introduction to Machine Learning
.footnote-back[
[Back to Table of Contents](#table-of-contents)
]
---
class: chapter-slide
# What is machine learning?
---
class: middle
# Traditional programming
## Prediction
![](images/traditional-programming.svg)
---
class: middle
# Machine Learning
## Training
![](images/ml-training.svg)
## Prediction
![](images/ml-prediction.svg)
---
class: center
# Amazon Recommendations
![](images/amazon.png)
---
class: center
# Higgs Boson
![](images/higgs.png)
.footnote[
[Machine Learning Wins the Higgs Challenge](https://atlas.cern/updates/atlas-news/machine-learning-wins-higgs-challenge)
]
---
![](images/blood_quality.png)
.footnote[
[Link to Source](https://www.broadinstitute.org/news/deep-learning-model-assesses-quality-stored-blood)
]
---
class: middle
# Types of Machine Learning
- Unsupervised Learning
- Reinforcement Learning
- Supervised Learning
---
# Unsupervised Learning
![:scale 80%](images/clustering.png)
.footnote[
[Link to Source](https://scikit-learn.org/dev/auto_examples/cluster/plot_cluster_comparison.html#sphx-glr-auto-examples-cluster-plot-cluster-comparison-py)
]
---
# Reinforcement Learning
![:scale 80%](images/reinforcement.svg)
---
# Reinforcement Learning
![:scale 80%](images/dota.png)
.footnote[
[Link to Source](https://arxiv.org/abs/1912.06680)
]
---
name: supervised
class: chapter-slide
# 2. Supervised Learning
.footnote-back[
[Back to Table of Contents](#table-of-contents)
]
---
# Supervised Learning
$$
(x_i, y_i) \propto p(x, y) \text{ i.i.d}
$$
- $p$ is an unknown joint distribution
- i.i.d means independent identically distributed
$$x_i \in \mathbb{R}^p$$
$$y_i \in \mathbb{R}$$
## Goal during training
$$f(x_i) \approx y_i$$
---
# Generalization
## Goal during training
$$f(x_i) \approx y_i$$
## Generalization
$$f(x) \approx y$$
For *non-training data*: $x$
---
class: middle
# Classification and Regression
.g[
.g-6[
## Classification
- target $y$ is discrete
- Does the patient have cancer?
]
.g-6[
## Regression
- target $y$ is continuous
- What is the price of the home?
]
]
---
# Data Representation
![:scale 80%](images/data-representation.svg)
---
# Loading Datasets
## Random datasets
```py
from sklearn.datasets import make_classification
from sklearn.datasets import make_regression
```
## Sample datasets
```py
from sklearn.datasets import load_breast_cancer
from sklearn.datasets import load_diabetes
from sklearn.datasets import load_digits
from sklearn.datasets import load_iris
from sklearn.datasets import load_wine
```
## OpenML
```py
from sklearn.datasets import fetch_openml
```
---
# Splitting Training and Test Data
![:scale 70%](images/train-test.svg)
---
class: chapter-slide
# Notebook 📒!
## notebooks/01-loading-data.ipynb
---
# Supervised ML Workflow
![](images/ml-workflow.svg)
---
# Supervised ML Workflow
![](images/ml-workflow-sklearn.svg)
---
class: chapter-slide
# Notebook 📓!
## notebooks/02-supervised-learning.ipynb
---
name: preprocessing
class: chapter-slide
# 3. Preprocessing
.footnote-back[
[Back to Table of Contents](#table-of-contents)
]
---
# Housing Dataset
![:scale 100%](notebooks/images/housing_scatter.svg)
---
# Feature Ranges
![:scale 90%](notebooks/images/housing_box.svg)
---
class: chapter-slide
# Notebook 📕!
## notebooks/02-preprocessing.ipynb
---
# KNN Scaling
![:scale 90%](notebooks/images/knn-data.svg)
---
# KNN Scaling Decision Boundary
![:scale 90%](notebooks/images/knn-scaling.svg)
---
# Scikit-Learn API
.center[
## `estimator.fit(X, [y])`
]
.g[
.g-6[
## `estimator.predict`
- Classification
- Regression
- Clustering
]
.g-6[
## `estimator.transform`
- Preprocessing
- Dimensionality reduction
- Feature selection
- Feature extraction
]
]
---
name: pipelines
class: chapter-slide
# 4. Pipelines
.footnote-back[
[Back to Table of Contents](#table-of-contents)
]
---
# Why Pipelines?
- Preprocessing must be fitted on training data only!
## Bad
```py
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.fit_transform(X_test)
```
## Good
```py
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
```
---
# Pipeline Example
## Before
```py
scaler = StandardScaler().fit(X_train)
X_train_scaled = scaler.transform(X_train)
est = Ridge().fit(X_train_scaled, y_train)
# Evaluate on training data
X_test_scaled = scaler.transform(X_test)
est.score(X_test_scaled, y_test)
```
## After
```py
*from sklearn.pipeline import make_pipeline
pipe = make_pipeline(StandardScaler(), Ridge())
pipe.fit(X_train, y_train)
pipe.score(X_test, y_test)
```
---
# Pipeline Overview
![](images/pipeline.svg)
---
class: chapter-slide
# Notebook 📕!
## notebooks/04-pipelines.ipynb
---
# Whats next?
## Intermediate Machine Learning with scikit-learn
- Cross Validation
- Parameter Tuning
- Pandas interoperability
- Missing Values
## Other Workshops
- Intermediate Machine Learning with scikit-learn: <br> *Evaluation, Calibration, and Inspection*
- Advanced Machine Learning with scikit-learn: <br> *Text Data, Imbalanced Data, and Poisson Regression*
---
class: title-slide, left
.g.g-middle[
.g-7[
![:scale 30%](images/scikit-learn-logo-notext.png)
1. [Introduction to Machine Learning](#introduction)
2. [Supervised Learning](#supervised)
3. [Preprocessing](#preprocessing)
4. [Pipelines](#pipelines)
]
.g-5.center[
<br>
.larger[Thomas J. Fan]<br>
@thomasjpfan<br>
<a href="https://www.github.com/thomasjpfan" target="_blank"><span class="icon icon-github icon-left"></span></a>
<a href="https://www.twitter.com/thomasjpfan" target="_blank"><span class="icon icon-twitter"></span></a>
<a class="this-talk-link", href="https://github.com/thomasjpfan/ml-workshop-intro" target="_blank">
This workshop on Github: github.com/thomasjpfan/ml-workshop-intro</a>
]
]
</textarea>
<script src="./assets/remark.min.js"></script>
<script>
var options = {
ratio: '16:9',
highlightLanguage: "python",
highlightStyle: "github",
highlightLines: true,
highlightSpans: true,
slideNumberFormat: '',
};
remark.macros['scale'] = function (percentage) {
var url = this;
return '<img src="' + url + '" style="width: ' + percentage + '" />';
};
var renderMath = function () {
renderMathInElement(document.body, {
delimiters: [
{ left: "$$", right: "$$", display: true },
{ left: "$", right: "$", display: false },
{ left: "\\[", right: "\\]", display: true },
{ left: "\\(", right: "\\)", display: false },
]
});
}
var slideshow = remark.create(options, renderMath);
</script>
</body>
</html>