This document shows how to run some simple example code with TFRT's BEFExecutor.
This document assumes you've installed TFRT and its prerequisites as described in the README.
Create a file called hello.mlir
with the following content:
func.func @hello() {
%chain = tfrt.new.chain
// Create a string containing "hello world" and store it in %hello.
%hello = "tfrt_test.get_string"() { value = "hello world" } : () -> !tfrt.string
// Print the string in %hello.
"tfrt_test.print_string"(%hello, %chain) : (!tfrt.string, !tfrt.chain) -> !tfrt.chain
tfrt.return
}
The @hello
function above shows how to create and print a string. The text
after each :
specifies the types involved:
() -> !tfrt.string
means thattfrt_test.get_string
takes no arguments and returns a!tfrt.string
.tfrt
is a MLIR dialect prefix (or namespace) for TFRT.(!tfrt.string, !tfrt.chain) -> !tfrt.chain
means thattfrt_test.print_string
takes two arguments (!tfrt.string
and!tfrt.chain
) and returns a!tfrt.chain
.chain
is a TFRT abstraction to manage dependencies. For detailed explanation, see the Explicit Dependency Management in TFRT documentation.
tfrt_test.get_string
's value
is an attribute, not an argument.
Attributes are compile-time constants, while arguments are only available at
runtime upon kernel/function invocation. In the above example, the value
attribute has the value hello world
.
tfrt.return
is a special form that specifies the function's return values,
similar to a C++ return
statement. In the above case, the function @hello
does not have a return value. For detailed explanation and more examples, refer
to the
TFRT Host Runtime Design documentation.
This example code ignores the !tfrt.chain
returned by
tfrt_test.print_string
.
Translate hello.mlir
to BEF by running
tfrt_translate --mlir_to_bef
:
$ bazel-bin/tools/tfrt_translate --mlir-to-bef hello.mlir > hello.bef
You can dump the encoded BEF file, and see that it contains the hello world
string attribute:
$ hexdump -C hello.bef
Run hello.bef
with bef_executor
to see it print hello world
:
$ bazel-bin/tools/bef_executor hello.bef
Choosing memory leak check allocator.
Choosing single-threaded work queue.
--- Running 'hello':
string = hello world
The first two Choosing
lines are bef_executor
explaining which
implementations of
HostAllocator
and
ConcurrentWorkQueue
it's using. The third --- Running 'hello':
line is printed by bef_executor
to show which MLIR function is currently executing (@hello
in this case). The
fourth string = hello world
line is printed by tfrt_test.print_string
, as
requested by hello.mlir
.
bef_executor
runs all functions defined in the .mlir
file that accept no
arguments. We can add another function to hello.mlir
by appending the
following to hello.mlir
:
func.func @hello_integers() {
%chain = tfrt.new.chain
// Create an integer containing 42.
%forty_two = tfrt.constant.i32 42
// Print 42.
tfrt.print.i32 %forty_two, %chain
tfrt.return
}
@hello_integers
shows how to create and print integers. This example does not
have the verbose type information we saw in @hello
because we've defined
custom parsers for the tfrt.constant.i32
and tfrt.print.i32
kernels in
basic_kernels.td.
See MLIR's
Operation Definition Specification (ODS)
for more information on how this works.
If we run tfrt_translate
and bef_executor
over hello.mlir
again, we see
that the executor calls our second function in addition to the first:
$ bazel-bin/tools/tfrt_translate --mlir-to-bef hello.mlir > hello.bef
$ bazel-bin/tools/bef_executor hello.bef
Choosing memory leak check allocator.
Choosing single-threaded work queue.
--- Running 'hello':
string = hello world
--- Running 'hello_integers':
int32 = 42
Let's define some custom kernels that manipulate (x, y) coordinate pairs.
Create lib/test_kernels/my_kernels.cc
containing the following:
#include <cstdio>
#include "tfrt/host_context/chain.h"
#include "tfrt/host_context/kernel_registry.h"
#include "tfrt/host_context/kernel_utils.h"
namespace tfrt {
namespace {
struct Coordinate {
int32_t x = 0;
int32_t y = 0;
};
static Coordinate CreateCoordinate(int32_t x, int32_t y) {
return Coordinate{x, y};
}
static Chain PrintCoordinate(Coordinate coordinate) {
printf("(%d, %d)\n", coordinate.x, coordinate.y);
return Chain();
}
} // namespace
void RegisterMyKernels(KernelRegistry* registry) {
registry->AddKernel("my.create_coordinate",
TFRT_KERNEL(CreateCoordinate));
registry->AddKernel("my.print_coordinate",
TFRT_KERNEL(PrintCoordinate));
}
} // namespace tfrt
Edit include/tfrt/test_kernels.h
to forward declare RegisterMyKernels
:
// Lots of existing forward declarations here...
void RegisterMyKernels(KernelRegistry* registry); // <-- ADD THIS LINE
Also edit lib/test_kernels/static_registration.cc
, updating
RegisterExampleKernels
to call RegisterMyKernels
:
static void RegisterExampleKernels(KernelRegistry* registry) {
// Lots of existing registrations here...
RegisterMyKernels(registry); // <-- ADD THIS LINE
}
Finally, edit the definition of test_kernels
in the top level BUILD
file, to
add lib/test_kernels/my_kernels.cc
to srcs
:
tfrt_cc_library(
name = "test_kernels",
srcs = [
# Lots of existing srcs here ...
"lib/test_kernels/my_kernels.cc", # <-- ADD THIS LINE
],
Now we can rebuild bef_executor
to compile and link with our new kernels:
$ bazel build -c opt //tools:bef_executor
With that done, we can write a coordinate.mlir
program that calls our new
kernels:
func @print_coordinate() {
%chain = tfrt.new.chain
%two = tfrt.constant.i32 2
%four = tfrt.constant.i32 4
%coordinate = "my.create_coordinate"(%two, %four) : (i32, i32) -> !my.coordinate
"my.print_coordinate"(%coordinate, %chain) : (!my.coordinate, !tfrt.chain) -> !tfrt.chain
tfrt.return
}
MLIR types that begin with !
are user-defined types like !my.coordinate
,
compared to built-in types like i32
. User-defined types do not need to be
registered with TFRT, so we do not need to rebuild tfrt_translate
:
tfrt_translate --mlir_to_bef
is a generic compiler transformation.
So now we can compile and run coordinate.mlir
:
$ bazel-bin/tools/tfrt_translate --mlir-to-bef coordinate.mlir > coordinate.bef
$ bazel-bin/tools/bef_executor coordinate.bef
Choosing memory leak check allocator.
Choosing single-threaded work queue.
--- Running 'print_coordinate':
(2, 4)
coordinate.mlir
shows several TFRT features:
- Kernels are just C++ functions with a name in MLIR:
my.print_coordinate
is the MLIR name for the C++PrintCoordinate
function. - Kernels may pass arbitrary user-defined types:
my.create_coordinate
passes a customCoordinate
struct tomy.print_coordinate
.
This tutorial is a work in progress. We hope to add more tutorials for topics like:
- Asynchronous execution
- Control flow
- Non-strict execution
Note in order to use TFRT, we do not expect TensorFlow end users to hand-write the MLIR programs as shown above. Instead, we are building a graph compiler that will generate such MLIR programs from TensorFlow functions created from TensorFlow model code.
Next, see TFRT Host Runtime Design for detailed
explanation on TFRT concepts including AsyncValue
, Kernel
, and Graph Execution
etc. Also, see
TFRT Op-by-op Execution Design on how TFRT
will support eagerly executing TensorFlow ops.