-
Notifications
You must be signed in to change notification settings - Fork 2
/
step3_train_and_evaluation.py
161 lines (136 loc) · 5.34 KB
/
step3_train_and_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import os.path as osp
from mmengine.config import Config, DictAction
from mmengine.runner import Runner
def parse_args():
parser = argparse.ArgumentParser(description='Train a pose model')
parser.add_argument('config', help='train config file path')
parser.add_argument('--work-dir', help='the dir to save logs and models')
parser.add_argument(
'--resume',
nargs='?',
type=str,
const='auto',
help='If specify checkpint path, resume from it, while if not '
'specify, try to auto resume from the latest checkpoint '
'in the work directory.')
parser.add_argument(
'--amp',
action='store_true',
default=False,
help='enable automatic-mixed-precision training')
parser.add_argument(
'--no-validate',
action='store_true',
help='whether not to evaluate the checkpoint during training')
parser.add_argument(
'--auto-scale-lr',
action='store_true',
help='whether to auto scale the learning rate according to the '
'actual batch size and the original batch size.')
parser.add_argument(
'--show-dir',
help='directory where the visualization images will be saved.')
parser.add_argument(
'--show',
action='store_true',
help='whether to display the prediction results in a window.')
parser.add_argument(
'--interval',
type=int,
default=1,
help='visualize per interval samples.')
parser.add_argument(
'--wait-time',
type=float,
default=1,
help='display time of every window. (second)')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
parser.add_argument(
'--launcher',
choices=['none', 'pytorch', 'slurm', 'mpi'],
default='none',
help='job launcher')
# When using PyTorch version >= 2.0.0, the `torch.distributed.launch`
# will pass the `--local-rank` parameter to `tools/train.py` instead
# of `--local_rank`.
parser.add_argument('--local_rank', '--local-rank', type=int, default=0)
args = parser.parse_args()
if 'LOCAL_RANK' not in os.environ:
os.environ['LOCAL_RANK'] = str(args.local_rank)
return args
def merge_args(cfg, args):
"""Merge CLI arguments to config."""
if args.no_validate:
cfg.val_cfg = None
cfg.val_dataloader = None
cfg.val_evaluator = None
cfg.launcher = args.launcher
# work_dir is determined in this priority: CLI > segment in file > filename
if args.work_dir is not None:
# update configs according to CLI args if args.work_dir is not None
cfg.work_dir = args.work_dir
elif cfg.get('work_dir', None) is None:
# use config filename as default work_dir if cfg.work_dir is None
cfg.work_dir = osp.join('./work_dirs',
osp.splitext(osp.basename(args.config))[0])
# enable automatic-mixed-precision training
if args.amp is True:
optim_wrapper = cfg.optim_wrapper.get('type', 'OptimWrapper')
assert optim_wrapper in ['OptimWrapper', 'AmpOptimWrapper'], \
'`--amp` is not supported custom optimizer wrapper type ' \
f'`{optim_wrapper}.'
cfg.optim_wrapper.type = 'AmpOptimWrapper'
cfg.optim_wrapper.setdefault('loss_scale', 'dynamic')
# resume training
if args.resume == 'auto':
cfg.resume = True
cfg.load_from = None
elif args.resume is not None:
cfg.resume = True
cfg.load_from = args.resume
# enable auto scale learning rate
if args.auto_scale_lr:
cfg.auto_scale_lr.enable = True
# visualization-
if args.show or (args.show_dir is not None):
assert 'visualization' in cfg.default_hooks, \
'PoseVisualizationHook is not set in the ' \
'`default_hooks` field of config. Please set ' \
'`visualization=dict(type="PoseVisualizationHook")`'
cfg.default_hooks.visualization.enable = True
cfg.default_hooks.visualization.show = args.show
if args.show:
cfg.default_hooks.visualization.wait_time = args.wait_time
cfg.default_hooks.visualization.out_dir = args.show_dir
cfg.default_hooks.visualization.interval = args.interval
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
return cfg
def main():
args = parse_args()
# load config
cfg = Config.fromfile(args.config)
# merge CLI arguments to config
cfg = merge_args(cfg, args)
# set preprocess configs to model
if 'preprocess_cfg' in cfg:
cfg.model.setdefault('data_preprocessor',
cfg.get('preprocess_cfg', {}))
# build the runner from config
runner = Runner.from_cfg(cfg)
# start training
runner.train()
if __name__ == '__main__':
main()