forked from harvardnlp/seq2seq-attn
-
Notifications
You must be signed in to change notification settings - Fork 1
/
train2.lua
525 lines (466 loc) · 20.4 KB
/
train2.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
require 'nn'
require 'nngraph'
require 'hdf5'
require 's2sa.data2'
require 's2sa.models'
require 's2sa.model_utils'
cmd = torch.CmdLine()
-- data files
cmd:text("")
cmd:text("**Data options**")
cmd:text("")
cmd:option('-data_file','data/demo-train.hdf5', [[Path to the training *.hdf5 file from preprocess.py]])
cmd:option('-val_data_file','data/demo-val.hdf5', [[Path to validation *.hdf5 file from preprocess.py]])
cmd:option('-savefile', 'seq2seq_lstm_attn', [[Savefile name (model will be saved as
savefile_epochX_PPL.t7 where X is the X-th epoch and PPL is
the validation perplexity]])
cmd:option('-num_shards', 0, [[If the training data has been broken up into different shards,
then training files are in this many partitions]])
cmd:option('-train_from', '', [[If training from a checkpoint then this is the path to the pretrained model.]])
-- rnn model specs
cmd:text("")
cmd:text("**Model options**")
cmd:text("")
cmd:option('-num_layers', 2, [[Number of layers in the LSTM encoder/decoder]])
cmd:option('-rnn_size', 500, [[Size of LSTM hidden states]])
cmd:option('-word_vec_size', 500, [[Word embedding sizes]])
cmd:option('-attn', 1, [[If = 1, use attention on the decoder side. If = 0, it uses the last
hidden state of the decoder as context at each time step.]])
cmd:option('-use_chars_enc', 0, [[If = 1, use character on the encoder side (instead of word embeddings]])
cmd:option('-use_chars_dec', 0, [[If = 1, use character on the decoder side (instead of word embeddings]])
cmd:option('-reverse_src', 0, [[If = 1, reverse the source sequence. The original
sequence-to-sequence paper found that this was crucial to
achieving good performance, but with attention models this
does not seem necessary. Recommend leaving it to 0]])
cmd:option('-init_dec', 1, [[Initialize the hidden/cell state of the decoder at time
0 to be the last hidden/cell state of the encoder. If 0,
the initial states of the decoder are set to zero vectors]])
cmd:option('-input_feed', 1, [[If = 1, feed the context vector at each time step as additional
input (vica concatenation with the word embeddings) to the decoder]])
cmd:option('-multi_attn', 0, [[If > 0, then use a another attention layer on this layer of
the decoder. For example, if num_layers = 3 and `multi_attn = 2`,
then the model will do an attention over the source sequence
on the second layer (and use that as input to the third layer) and
the penultimate layer]])
cmd:option('-res_net', 0, [[Use residual connections between LSTM stacks whereby the input to
the l-th LSTM layer if the hidden state of the l-1-th LSTM layer
added with the l-2th LSTM layer. We didn't find this to help in our
experiments]])
cmd:option('-guided_alignment', 0, [[If 1, use external alignments to guide the attention weights as in
(Chen et al., Guided Alignment Training for Topic-Aware Neural Machine Translation,
arXiv 2016.). Alignments should have been provided during preprocess]])
cmd:option('-guided_alignment_weight', 0.5, [[default weights for external alignments]])
cmd:option('-guided_alignment_decay', 1, [[decay rate per epoch for alignment weight - typical with 0.9,
weight will end up at ~30% of its initial value]])
cmd:text("")
cmd:text("Below options only apply if using the character model.")
cmd:text("")
-- char-cnn model specs (if use_chars == 1)
cmd:option('-char_vec_size', 25, [[Size of the character embeddings]])
cmd:option('-kernel_width', 6, [[Size (i.e. width) of the convolutional filter]])
cmd:option('-num_kernels', 1000, [[Number of convolutional filters (feature maps). So the
representation from characters will have this many dimensions]])
cmd:option('-num_highway_layers', 2, [[Number of highway layers in the character model]])
cmd:text("")
cmd:text("**Optimization options**")
cmd:text("")
-- optimization
cmd:option('-epochs', 13, [[Number of training epochs]])
cmd:option('-start_epoch', 1, [[If loading from a checkpoint, the epoch from which to start]])
cmd:option('-param_init', 0.1, [[Parameters are initialized over uniform distribution with support (-param_init, param_init)]])
cmd:option('-optim', 'sgd', [[Optimization method. Possible options are: sgd (vanilla SGD), adagrad, adadelta, adam]])
cmd:option('-learning_rate', 1, [[Starting learning rate. If adagrad/adadelta/adam is used,
then this is the global learning rate. Recommended settings: sgd =1,
adagrad = 0.1, adadelta = 1, adam = 0.1]])
cmd:option('-layer_lrs', '', [[Comma-separated learning rates for encoder, decoder, and generator. Only used if optim ~= sgd.]])
cmd:option('-max_grad_norm', 5, [[If the norm of the gradient vector exceeds this renormalize it to have the norm equal to max_grad_norm]])
cmd:option('-dropout', 0.3, [[Dropout probability. Dropout is applied between vertical LSTM stacks.]])
cmd:option('-lr_decay', 0.5, [[Decay learning rate by this much if (i) perplexity does not decrease
on the validation set or (ii) epoch has gone past the start_decay_at_limit]])
cmd:option('-start_decay_at', 9, [[Start decay after this epoch]])
cmd:option('-curriculum', 0, [[For this many epochs, order the minibatches based on source
sequence length. Sometimes setting this to 1 will increase convergence speed.]])
cmd:option('-feature_embeddings_dim_exponent', 0.7, [[If the feature takes N values, then the
embbeding dimension will be set to N^exponent]])
cmd:option('-pre_word_vecs_enc', '', [[If a valid path is specified, then this will load
pretrained word embeddings (hdf5 file) on the encoder side.
See README for specific formatting instructions.]])
cmd:option('-pre_word_vecs_dec', '', [[If a valid path is specified, then this will load
pretrained word embeddings (hdf5 file) on the decoder side.
See README for specific formatting instructions.]])
cmd:option('-fix_word_vecs_enc', 0, [[If = 1, fix word embeddings on the encoder side]])
cmd:option('-fix_word_vecs_dec', 0, [[If = 1, fix word embeddings on the decoder side]])
cmd:option('-max_batch_l', '', [[If blank, then it will infer the max batch size from validation
data. You should only use this if your validation set uses a different
batch size in the preprocessing step]])
cmd:text("")
cmd:text("**Other options**")
cmd:text("")
cmd:option('-start_symbol', 0, [[Use special start-of-sentence and end-of-sentence tokens
on the source side. We've found this to make minimal difference]])
-- GPU
cmd:option('-gpuid', -1, [[Which gpu to use. -1 = use CPU]])
cmd:option('-gpuid2', -1, [[If this is >= 0, then the model will use two GPUs whereby the encoder
is on the first GPU and the decoder is on the second GPU.
This will allow you to train with bigger batches/models.]])
cmd:option('-cudnn', 0, [[Whether to use cudnn or not for convolutions (for the character model).
cudnn has much faster convolutions so this is highly recommended
if using the character model]])
-- bookkeeping
cmd:option('-save_every', 1, [[Save every this many epochs]])
cmd:option('-print_every', 50, [[Print stats after this many batches]])
cmd:option('-seed', 3435, [[Seed for random initialization]])
cmd:option('-prealloc', 1, [[Use memory preallocation and sharing between cloned encoder/decoders]])
local function zero_table(tab)
for i = 1, #tab do
tab[i]:zero()
end
end
function train(train_data, valid_data)
local timer = torch.Timer()
local num_params = 0
local num_prunedparams = 0
local start_decay = 0
params, grad_params = {}, {}
opt.train_perf = {}
opt.val_perf = {}
for i = 1, #layers do
if opt.gpuid2 >= 0 then
if i == 1 then
cutorch.setDevice(opt.gpuid)
else
cutorch.setDevice(opt.gpuid2)
end
end
local p, gp = layers[i]:getParameters()
-- if opt.train_from:len() == 0 then
-- p:uniform(-opt.param_init, opt.param_init)
-- end
num_params = num_params + p:size(1)
params[i] = p
grad_params[i] = gp
layers[i]:apply(function (m) if m.nPruned then num_prunedparams=num_prunedparams+m:nPruned() end end)
end
if opt.pre_word_vecs_enc:len() > 0 then
local f = hdf5.open(opt.pre_word_vecs_enc)
local pre_word_vecs = f:read('word_vecs'):all()
for i = 1, pre_word_vecs:size(1) do
word_vec_layers[1].weight[i]:copy(pre_word_vecs[i])
end
end
print("Number of parameters: " .. num_params .. " (active: " .. num_params-num_prunedparams .. ")")
if opt.gpuid >= 0 and opt.gpuid2 >= 0 then
cutorch.setDevice(opt.gpuid)
word_vec_layers[1].weight[1]:zero()
else
word_vec_layers[1].weight[1]:zero()
end
-- decay learning rate if val perf does not improve or we hit the opt.start_decay_at limit
function decay_lr(epoch)
print(opt.val_perf)
if opt.decay_schedule2 then
start_decay = 0
end
if epoch >= opt.start_decay_at then
start_decay = 1
end
if opt.val_perf[#opt.val_perf] ~= nil and opt.val_perf[#opt.val_perf-1] ~= nil then
local curr_ppl = opt.val_perf[#opt.val_perf]
local prev_ppl = opt.val_perf[#opt.val_perf-1]
if curr_ppl > prev_ppl then
start_decay = 1
end
end
if start_decay == 1 then
opt.learning_rate = opt.learning_rate * opt.lr_decay
end
end
function train_batch(data, epoch)
opt.num_source_features = data.num_source_features
local train_nonzeros = 0
local train_loss = 0
local batch_order = torch.randperm(data.length) -- shuffle mini batch order
local start_time = timer:time().real
local num_words_target = 0
local num_words_source = 0
for i = 1, data:size() do
zero_table(grad_params, 'zero')
local d
if epoch <= opt.curriculum then
d = data[i]
else
d = data[batch_order[i]]
end
local target, target_out, nonzeros, source = d[1], d[2], d[3], d[4]
local batch_l, target_l, source_l = d[5], d[6], d[7]
-- forward prop encoder
encoder:training()
local preds = encoder:forward(source)
local loss = criterion:forward(preds, target_out:view(-1))/batch_l
local dl_dpred = criterion:backward(preds, target_out:view(-1))
dl_dpred:div(batch_l)
encoder:backward(source, dl_dpred)
local grad_norm = 0
grad_norm = grad_params[1]:norm()
word_vec_layers[1].gradWeight[1]:zero()
if opt.fix_word_vecs_enc == 1 then
word_vec_layers[1].gradWeight:zero()
end
-- Shrink norm and update params
local param_norm = 0
local shrinkage = opt.max_grad_norm / grad_norm
for j = 1, #grad_params do
if opt.gpuid >= 0 and opt.gpuid2 >= 0 then
if j == 1 then
cutorch.setDevice(opt.gpuid)
else
cutorch.setDevice(opt.gpuid2)
end
end
if shrinkage < 1 then
grad_params[j]:mul(shrinkage)
end
if opt.optim == 'adagrad' then
adagrad_step(params[j], grad_params[j], layer_etas[j], optStates[j])
elseif opt.optim == 'adadelta' then
adadelta_step(params[j], grad_params[j], layer_etas[j], optStates[j])
elseif opt.optim == 'adam' then
adam_step(params[j], grad_params[j], layer_etas[j], optStates[j])
else
params[j]:add(-opt.learning_rate, grad_params[j])
end
param_norm = param_norm + params[j]:norm()^2
end
param_norm = param_norm^0.5
-- Bookkeeping
num_words_target = num_words_target + batch_l*target_l
num_words_source = num_words_source + batch_l*source_l
train_nonzeros = train_nonzeros + nonzeros
train_loss = train_loss + loss*batch_l
local time_taken = timer:time().real - start_time
if i % opt.print_every == 0 then
local stats = string.format('Epoch: %d, Batch: %d/%d, Batch size: %d, LR: %.4f, ',
epoch, i, data:size(), batch_l, opt.learning_rate)
if opt.guided_alignment == 1 then
stats = stats .. string.format('PPL: %.2f, PPL_CLL: %.2f, |Param|: %.2f, |GParam|: %.2f, ',
math.exp(train_loss/train_nonzeros), math.exp(train_loss_cll/train_nonzeros), param_norm, grad_norm)
else
stats = stats .. string.format('PPL: %.2f, |Param|: %.2f, |GParam|: %.2f, ',
math.exp(train_loss/train_nonzeros), param_norm, grad_norm)
end
stats = stats .. string.format('Training: %d/%d/%d total/source/target tokens/sec',
(num_words_target+num_words_source) / time_taken,
num_words_source / time_taken,
num_words_target / time_taken)
print(stats)
end
if i % 200 == 0 then
collectgarbage()
end
end
return train_loss, train_nonzeros
end
local total_loss, total_nonzeros, batch_loss, batch_nonzeros, total_loss_cll, batch_loss_cll
for epoch = opt.start_epoch, opt.epochs do
if opt.num_shards > 0 then
total_loss = 0
total_nonzeros = 0
total_loss_cll = 0
local shard_order = torch.randperm(opt.num_shards)
for s = 1, opt.num_shards do
local fn = train_data .. '.' .. shard_order[s] .. '.hdf5'
print('loading shard #' .. shard_order[s])
local shard_data = data.new(opt, fn)
if opt.guided_alignment == 1 then
batch_loss, batch_nonzeros, batch_loss_cll = train_batch(shard_data, epoch)
total_loss_cll = total_loss_cll + batch_loss_cll
else
batch_loss, batch_nonzeros = train_batch(shard_data, epoch)
end
total_loss = total_loss + batch_loss
total_nonzeros = total_nonzeros + batch_nonzeros
end
else
total_loss, total_nonzeros = train_batch(train_data, epoch)
end
local train_score = math.exp(total_loss/total_nonzeros)
print('Train', train_score)
opt.train_perf[#opt.train_perf + 1] = train_score
local score = eval(valid_data)
opt.val_perf[#opt.val_perf + 1] = score
if opt.optim == 'sgd' then --only decay with SGD
decay_lr(epoch)
end
-- clean and save models
local savefile = string.format('%s_epoch%.2f_%.2f.t7', opt.savefile, epoch, score)
if epoch % opt.save_every == 0 then
print('saving checkpoint to ' .. savefile)
clean_layer(generator)
torch.save(savefile, {{encoder, decoder, generator, encoder_bwd}, opt})
end
end
-- save final model
local savefile = string.format('%s_final.t7', opt.savefile)
print('saving final model to ' .. savefile)
torch.save(savefile, {{encoder:double(), decoder:double(), generator:double()}, opt})
end
function eval(data)
encoder:evaluate()
local nll = 0
local total = 0
for i = 1, data:size() do
local d = data[i]
local target, target_out, nonzeros, source = d[1], d[2], d[3], d[4]
local batch_l, target_l, source_l = d[5], d[6], d[7]
if opt.gpuid >= 0 and opt.gpuid2 >= 0 then
cutorch.setDevice(opt.gpuid)
end
local preds = encoder:forward(source)
local loss = criterion:forward(preds, target_out:view(-1))
nll = nll + loss
total = total + nonzeros
end
local valid = math.exp(nll / total)
print("Valid", valid)
collectgarbage()
return valid
end
function get_layer(layer)
if layer.name ~= nil then
if layer.name == 'word_vecs_dec' then
table.insert(word_vec_layers, layer)
elseif layer.name == 'word_vecs_enc' then
table.insert(word_vec_layers, layer)
elseif layer.name == 'charcnn_enc' or layer.name == 'mlp_enc' then
local p, gp = layer:parameters()
for i = 1, #p do
table.insert(charcnn_layers, p[i])
table.insert(charcnn_grad_layers, gp[i])
end
end
end
end
function main()
-- parse input params
opt = cmd:parse(arg)
torch.manualSeed(opt.seed)
if opt.gpuid >= 0 then
print('using CUDA on GPU ' .. opt.gpuid .. '...')
if opt.gpuid2 >= 0 then
print('using CUDA on second GPU ' .. opt.gpuid2 .. '...')
end
require 'cutorch'
require 'cunn'
if opt.cudnn == 1 then
print('loading cudnn...')
require 'cudnn'
end
cutorch.setDevice(opt.gpuid)
cutorch.manualSeed(opt.seed)
end
-- Create the data loader class.
print('loading data...')
if opt.num_shards == 0 then
train_data = data.new(opt, opt.data_file)
else
train_data = opt.data_file
end
valid_data = data.new(opt, opt.val_data_file)
print('done!')
local max_source_l = train_data.source_l:max()
local max_targ_l = train_data.target_l:max()
print(string.format('Source vocab size: %d, Target vocab size: %d',
valid_data.source_size, valid_data.target_size))
opt.max_sent_l_src = valid_data.source:size(2)
opt.max_sent_l_targ = valid_data.target:size(2)
opt.max_sent_l = math.max(opt.max_sent_l_src, opt.max_sent_l_targ)
if opt.max_batch_l == '' then
opt.max_batch_l = valid_data.batch_l:max()
end
if opt.use_chars_enc == 1 or opt.use_chars_dec == 1 then
opt.max_word_l = valid_data.char_length
end
print(string.format('Source max sent len: %d, Target max sent len: %d',
valid_data.source:size(2), valid_data.target:size(2)))
print(string.format('Number of additional features on source side: %d', valid_data.num_source_features))
-- -- Enable memory preallocation - see memory.lua
-- preallocateMemory(opt.prealloc)
-- Build model
-- block sizes are in format {nlayers, outputsize}
local block_sizes = {
{2, max_source_l*opt.word_vec_size/2},
{2, max_source_l*opt.word_vec_size/4},
{2, max_source_l*opt.word_vec_size/8},
{2, max_source_l*opt.word_vec_size/16},
{2, max_source_l*opt.word_vec_size/32}
}
if opt.train_from:len() == 0 then
encoder = make_predictor(valid_data, opt, block_sizes, max_source_l, max_targ_l)
--generator, criterion = make_generator(valid_data, opt)
local w = torch.ones(valid_data.target_size)
w[1] = 0
criterion = nn.ClassNLLCriterion(w)
criterion.sizeAverage = false
else
assert(false)
assert(path.exists(opt.train_from), 'checkpoint path invalid')
print('loading ' .. opt.train_from .. '...')
local checkpoint = torch.load(opt.train_from)
local model, model_opt = checkpoint[1], checkpoint[2]
opt.num_layers = model_opt.num_layers
opt.rnn_size = model_opt.rnn_size
opt.input_feed = model_opt.input_feed or 1
opt.attn = model_opt.attn or 1
opt.brnn = model_opt.brnn or 0
encoder = model[1]
decoder = model[2]
generator = model[3]
if model_opt.brnn == 1 then
encoder_bwd = model[4]
end
_, criterion = make_generator(valid_data, opt)
end
layers = {encoder}
if opt.optim ~= 'sgd' then
layer_etas = {}
optStates = {}
if opt.layer_lrs:len() > 0 then
local stringx = require('pl.stringx')
local lr_strings = stringx.split(opt.layer_lrs, ',')
if #lr_strings ~= #layers then error('1 learning rate per layer expected') end
for i = 1, #lr_strings do
local lr = tonumber(stringx.strip(lr_strings[i]))
if not lr then
error(string.format('malformed learning rate: %s', lr_strings[i]))
else
layer_etas[i] = lr
end
end
end
for i = 1, #layers do
layer_etas[i] = layer_etas[i] or opt.learning_rate
optStates[i] = {}
end
end
if opt.gpuid >= 0 then
for i = 1, #layers do
if opt.gpuid2 >= 0 then
if i == 1 or i == 4 then
cutorch.setDevice(opt.gpuid) --encoder on gpu1
else
cutorch.setDevice(opt.gpuid2) --decoder/generator on gpu2
end
end
layers[i]:cuda()
end
if opt.gpuid2 >= 0 then
cutorch.setDevice(opt.gpuid2) --criterion on gpu2
end
criterion:cuda()
end
-- these layers will be manipulated during training
word_vec_layers = {}
encoder:apply(get_layer)
train(train_data, valid_data)
end
main()