forked from CUBRID/cubrid-odbc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
odbc_number.c
1214 lines (1049 loc) · 27.7 KB
/
odbc_number.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/* number.c: Implements arbitrary precision numbers. */
/* This file is part of GNU bc.
Copyright (C) 1991, 1992, 1993, 1994, 1997 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
You may contact the author by:
e-mail: [email protected]
us-mail: Philip A. Nelson
Computer Science Department, 9062
Western Washington University
Bellingham, WA 98226-9062
*************************************************************************/
#include <stdio.h>
#include <limits.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#include "odbc_number.h"
/* The base used in storing the numbers in n_value above.
Currently this MUST be 10. */
#define BASE 10
/* Some useful macros and constants. */
#define CH_VAL(c) (c - '0')
#define BCD_CHAR(d) (d + '0')
#ifdef MIN
#undef MIN
#undef MAX
#endif
#define MAX(a,b) ((a)>(b)?(a):(b))
#define MIN(a,b) ((a)>(b)?(b):(a))
#define ODD(a) ((a)&1)
#ifndef TRUE
#define TRUE 1
#define FALSE 0
#endif
static bc_num new_num (int length, int scale);
static bc_num copy_num (bc_num num);
static void init_num (bc_num * num);
static int bc_compare (bc_num n1, bc_num n2);
static char is_zero (bc_num num);
static char is_neg (bc_num num);
static int bc_modulo (bc_num num1, bc_num num2, bc_num * result, int scale);
static int _do_compare (bc_num n1, bc_num n2, int use_sign, int ignore_last);
static void _rm_leading_zeros (bc_num num);
static bc_num _do_add (bc_num n1, bc_num n2, int scale_min);
static bc_num _do_sub (bc_num n1, bc_num n2, int scale_min);
static void _one_mult (unsigned char *num, int size, int digit,
unsigned char *result);
/* Storage used for special numbers. */
static bc_num _zero_ = NULL;
static bc_num _one_ = NULL;
static bc_num _two_ = NULL;
/* The reference string for digits. */
/* Intitialize the number package! */
int
init_numbers ()
{
if (_zero_ == NULL)
{
_zero_ = new_num (1, 0);
if (_zero_ == NULL)
return -1;
}
if (_one_ == NULL)
{
_one_ = new_num (1, 0);
if (_one_ == NULL)
return -1;
_one_->n_value[0] = 1;
}
if (_two_ == NULL)
{
_two_ = new_num (1, 0);
if (_two_ == NULL)
return -1;
_two_->n_value[0] = 2;
}
return 0;
}
/* Here is the full add routine that takes care of negative numbers.
N1 is added to N2 and the result placed into RESULT. SCALE_MIN
is the minimum scale for the result. */
int
bc_add (n1, n2, result, scale_min)
bc_num n1, n2, *result;
int scale_min;
{
bc_num sum;
int cmp_res;
int res_scale;
if (n1->n_sign == n2->n_sign)
{
sum = _do_add (n1, n2, scale_min);
if (sum == NULL)
return -1;
sum->n_sign = n1->n_sign;
}
else
{
/* subtraction must be done. */
cmp_res = _do_compare (n1, n2, FALSE, FALSE); /* Compare magnitudes. */
switch (cmp_res)
{
case -1:
/* n1 is less than n2, subtract n1 from n2. */
sum = _do_sub (n2, n1, scale_min);
if (sum == NULL)
return -1;
sum->n_sign = n2->n_sign;
break;
case 0:
/* They are equal! return zero with the correct scale! */
res_scale = MAX (scale_min, MAX (n1->n_scale, n2->n_scale));
sum = new_num (1, res_scale);
if (sum == NULL)
return -1;
memset (sum->n_value, 0, res_scale + 1);
break;
case 1:
/* n2 is less than n1, subtract n2 from n1. */
sum = _do_sub (n1, n2, scale_min);
if (sum == NULL)
return -1;
sum->n_sign = n1->n_sign;
}
}
/* Clean up and return. */
free_num (result);
*result = sum;
return 0;
}
/* Here is the full subtract routine that takes care of negative numbers.
N2 is subtracted from N1 and the result placed in RESULT. SCALE_MIN
is the minimum scale for the result. */
int
bc_sub (n1, n2, result, scale_min)
bc_num n1, n2, *result;
int scale_min;
{
bc_num diff;
int cmp_res;
int res_scale;
if (n1->n_sign != n2->n_sign)
{
diff = _do_add (n1, n2, scale_min);
if (diff == NULL)
return -1;
diff->n_sign = n1->n_sign;
}
else
{
/* subtraction must be done. */
cmp_res = _do_compare (n1, n2, FALSE, FALSE); /* Compare magnitudes. */
switch (cmp_res)
{
case -1:
/* n1 is less than n2, subtract n1 from n2. */
diff = _do_sub (n2, n1, scale_min);
if (diff == NULL)
return -1;
diff->n_sign = (n2->n_sign == PLUS ? MINUS : PLUS);
break;
case 0:
/* They are equal! return zero! */
res_scale = MAX (scale_min, MAX (n1->n_scale, n2->n_scale));
diff = new_num (1, res_scale);
if (diff == NULL)
return -1;
memset (diff->n_value, 0, res_scale + 1);
break;
case 1:
/* n2 is less than n1, subtract n2 from n1. */
diff = _do_sub (n1, n2, scale_min);
if (diff == NULL)
return -1;
diff->n_sign = n1->n_sign;
break;
}
}
/* Clean up and return. */
free_num (result);
*result = diff;
return 0;
}
/* The multiply routine. N2 time N1 is put int PROD with the scale of
the result being MIN(N2 scale+N1 scale, MAX (SCALE, N2 scale, N1 scale)).
*/
int
bc_multiply (n1, n2, prod, scale)
bc_num n1, n2, *prod;
int scale;
{
bc_num pval; /* For the working storage. */
char *n1ptr, *n2ptr, *pvptr; /* Work pointers. */
char *n1end, *n2end; /* To the end of n1 and n2. */
int indx;
int len1, len2, total_digits;
long sum;
int full_scale, prod_scale;
int toss;
/* Initialize things. */
len1 = n1->n_len + n1->n_scale;
len2 = n2->n_len + n2->n_scale;
total_digits = len1 + len2;
full_scale = n1->n_scale + n2->n_scale;
prod_scale = MIN (full_scale, MAX (scale, MAX (n1->n_scale, n2->n_scale)));
toss = full_scale - prod_scale;
pval = new_num (total_digits - full_scale, prod_scale);
if (pval == NULL)
return -1;
pval->n_sign = (n1->n_sign == n2->n_sign ? PLUS : MINUS);
n1end = (char *) (n1->n_value + len1 - 1);
n2end = (char *) (n2->n_value + len2 - 1);
pvptr = (char *) (pval->n_value + total_digits - toss - 1);
sum = 0;
/* Here are the loops... */
for (indx = 0; indx < toss; indx++)
{
n1ptr = (char *) (n1end - MAX (0, indx - len2 + 1));
n2ptr = (char *) (n2end - MIN (indx, len2 - 1));
while ((n1ptr >= n1->n_value) && (n2ptr <= n2end))
sum += *n1ptr-- * *n2ptr++;
sum = sum / BASE;
}
for (; indx < total_digits - 1; indx++)
{
n1ptr = (char *) (n1end - MAX (0, indx - len2 + 1));
n2ptr = (char *) (n2end - MIN (indx, len2 - 1));
while ((n1ptr >= n1->n_value) && (n2ptr <= n2end))
sum += *n1ptr-- * *n2ptr++;
*pvptr-- = sum % BASE;
sum = sum / BASE;
}
*pvptr-- = (char)sum;
/* Assign to prod and clean up the number. */
free_num (prod);
*prod = pval;
_rm_leading_zeros (*prod);
if (is_zero (*prod))
(*prod)->n_sign = PLUS;
return 0;
}
/* The full division routine. This computes N1 / N2. It returns
0 if the division is ok and the result is in QUOT. The number of
digits after the decimal point is SCALE. It returns -1 if division
by zero is tried. The algorithm is found in Knuth Vol 2. p237. */
int
bc_divide (n1, n2, quot, scale)
bc_num n1, n2, *quot;
int scale;
{
bc_num qval;
unsigned char *num1, *num2;
unsigned char *ptr1, *ptr2, *n2ptr, *qptr;
int scale1, val;
unsigned int len1, len2, scale2, qdigits, extra, count;
unsigned int qdig, qguess, borrow, carry;
unsigned char *mval;
char zero;
unsigned int norm;
/* Test for divide by zero. */
if (is_zero (n2))
return -2;
/* Test for divide by 1. If it is we must truncate. */
if (n2->n_scale == 0)
{
if (n2->n_len == 1 && *n2->n_value == 1)
{
qval = new_num (n1->n_len, scale);
if (qval == NULL)
return -1;
qval->n_sign = (n1->n_sign == n2->n_sign ? PLUS : MINUS);
memset (&qval->n_value[n1->n_len], 0, scale);
memcpy (qval->n_value, n1->n_value,
n1->n_len + MIN (n1->n_scale, scale));
free_num (quot);
*quot = qval;
}
}
/* Set up the divide. Move the decimal point on n1 by n2's scale.
Remember, zeros on the end of num2 are wasted effort for dividing. */
scale2 = n2->n_scale;
n2ptr = (unsigned char *) n2->n_value + n2->n_len + scale2 - 1;
while ((scale2 > 0) && (*n2ptr-- == 0))
scale2--;
len1 = n1->n_len + scale2;
scale1 = n1->n_scale - scale2;
if (scale1 < scale)
extra = scale - scale1;
else
extra = 0;
num1 = (unsigned char *) malloc (n1->n_len + n1->n_scale + extra + 2);
if (num1 == NULL)
return -1;
memset (num1, 0, n1->n_len + n1->n_scale + extra + 2);
memcpy (num1 + 1, n1->n_value, n1->n_len + n1->n_scale);
len2 = n2->n_len + scale2;
num2 = (unsigned char *) malloc (len2 + 1);
if (num2 == NULL)
return -1;
memcpy (num2, n2->n_value, len2);
*(num2 + len2) = 0;
n2ptr = num2;
while (*n2ptr == 0)
{
n2ptr++;
len2--;
}
/* Calculate the number of quotient digits. */
if (len2 > len1 + scale)
{
qdigits = scale + 1;
zero = TRUE;
}
else
{
zero = FALSE;
if (len2 > len1)
qdigits = scale + 1; /* One for the zero integer part. */
else
qdigits = len1 - len2 + scale + 1;
}
/* Allocate and zero the storage for the quotient. */
qval = new_num (qdigits - scale, scale);
if (qval == NULL)
return -1;
memset (qval->n_value, 0, qdigits);
/* Allocate storage for the temporary storage mval. */
mval = (unsigned char *) malloc (len2 + 1);
if (mval == NULL)
return -1;
/* Now for the full divide algorithm. */
if (!zero)
{
/* Normalize */
norm = 10 / ((int) *n2ptr + 1);
if (norm != 1)
{
_one_mult (num1, len1 + scale1 + extra + 1, norm, num1);
_one_mult (n2ptr, len2, norm, n2ptr);
}
/* Initialize divide loop. */
qdig = 0;
if (len2 > len1)
qptr = (unsigned char *) qval->n_value + len2 - len1;
else
qptr = (unsigned char *) qval->n_value;
/* Loop */
while (qdig <= len1 + scale - len2)
{
/* Calculate the quotient digit guess. */
if (*n2ptr == num1[qdig])
qguess = 9;
else
qguess =
(num1[qdig] * 10 + num1[qdig + 1]) / (unsigned int) (*n2ptr);
/* Test qguess. */
if (n2ptr[1] * qguess >
(num1[qdig] * 10 + num1[qdig + 1] - *n2ptr * qguess) * 10
+ num1[qdig + 2])
{
qguess--;
/* And again. */
if (n2ptr[1] * qguess >
(num1[qdig] * 10 + num1[qdig + 1] - *n2ptr * qguess) * 10
+ num1[qdig + 2])
qguess--;
}
/* Multiply and subtract. */
borrow = 0;
if (qguess != 0)
{
*mval = 0;
_one_mult (n2ptr, len2, qguess, mval + 1);
ptr1 = (unsigned char *) num1 + qdig + len2;
ptr2 = (unsigned char *) mval + len2;
for (count = 0; count < len2 + 1; count++)
{
val = (int) *ptr1 - (int) *ptr2-- - borrow;
if (val < 0)
{
val += 10;
borrow = 1;
}
else
borrow = 0;
*ptr1-- = val;
}
}
/* Test for negative result. */
if (borrow == 1)
{
qguess--;
ptr1 = (unsigned char *) num1 + qdig + len2;
ptr2 = (unsigned char *) n2ptr + len2 - 1;
carry = 0;
for (count = 0; count < len2; count++)
{
val = (int) *ptr1 + (int) *ptr2-- + carry;
if (val > 9)
{
val -= 10;
carry = 1;
}
else
carry = 0;
*ptr1-- = val;
}
if (carry == 1)
*ptr1 = (unsigned char) ((*ptr1) + 1) % 10;
}
/* We now know the quotient digit. */
*qptr++ = qguess;
qdig++;
}
}
/* Clean up and return the number. */
qval->n_sign = (n1->n_sign == n2->n_sign ? PLUS : MINUS);
if (is_zero (qval))
qval->n_sign = PLUS;
_rm_leading_zeros (qval);
//free_num (quot);
*quot = qval;
/* Clean up temporary storage. */
free (mval);
free (num1);
free (num2);
return 0; /* Everything is OK. */
}
/* Division *and* modulo for numbers. This computes both NUM1 / NUM2 and
NUM1 % NUM2 and puts the results in QUOT and REM, except that if QUOT
is NULL then that store will be omitted.
*/
int
bc_divmod (num1, num2, quot, rem, scale)
bc_num num1, num2, *quot, *rem;
int scale;
{
bc_num quotient;
bc_num temp;
int rscale;
/* Check for correct numbers. */
if (is_zero (num2))
return -1;
/* Calculate final scale. */
rscale = MAX (num1->n_scale, num2->n_scale + scale);
init_num (&temp);
/* Calculate it. */
bc_divide (num1, num2, &temp, scale);
if (quot)
quotient = copy_num (temp);
bc_multiply (temp, num2, &temp, rscale);
bc_sub (num1, temp, rem, rscale);
free_num (&temp);
if (quot)
{
//free_num (quot);
*quot = quotient;
}
return 0; /* Everything is OK. */
}
/* "Frees" a bc_num NUM. Actually decreases reference count and only
frees the storage if reference count is zero. */
void
free_num (num)
bc_num *num;
{
if (*num == NULL)
return;
(*num)->n_refs--;
if ((*num)->n_refs == 0)
free (*num);
*num = NULL;
}
/* Convert strings to bc numbers. Base 10 only.*/
int
str2num (num, str, scale)
bc_num *num;
char *str;
int scale;
{
int digits, strscale;
char *ptr, *nptr;
char zero_int;
/* Prepare num. */
free_num (num);
/* Check for valid number and count digits. */
ptr = str;
digits = 0;
strscale = 0;
zero_int = FALSE;
if ((*ptr == '+') || (*ptr == '-'))
ptr++; /* Sign */
while (*ptr == '0')
{ /* Skip leading zeros */
ptr++;
if (*ptr == '\0')
{
ptr--;
break;
}
}
while (isdigit (*ptr))
ptr++, digits++; /* digits */
if (*ptr == '.')
ptr++; /* decimal point */
while (isdigit (*ptr))
ptr++, strscale++; /* digits */
if ((*ptr != '\0') || (digits + strscale == 0))
{
*num = copy_num (_zero_);
return -2;
}
/* Adjust numbers and allocate storage and initialize fields. */
strscale = MIN (strscale, scale);
if (digits == 0)
{
zero_int = TRUE;
digits = 1;
}
*num = new_num (digits, strscale);
if (*num == NULL)
return -1;
/* Build the whole number. */
ptr = str;
if (*ptr == '-')
{
(*num)->n_sign = MINUS;
ptr++;
}
else
{
(*num)->n_sign = PLUS;
if (*ptr == '+')
ptr++;
}
while (*ptr == '0')
{ /* Skip leading zeros. */
ptr++;
if (*ptr == '\0')
{
ptr--;
break;
}
}
nptr = (*num)->n_value;
if (zero_int)
{
*nptr++ = 0;
digits = 0;
}
for (; digits > 0; digits--)
*nptr++ = CH_VAL (*ptr++);
/* Build the fractional part. */
if (strscale > 0)
{
ptr++; /* skip the decimal point! */
for (; strscale > 0; strscale--)
*nptr++ = CH_VAL (*ptr++);
}
return 0;
}
/* Convert a numbers to a string. Base 10 only.*/
char *
num2str (num)
bc_num num;
{
char *str, *sptr;
char *nptr;
int index, signch;
/* Allocate the string memory. */
signch = (num->n_sign == PLUS ? 0 : 1); /* Number of sign chars. */
if (num->n_scale > 0)
str = (char *) malloc (num->n_len + num->n_scale + 2 + signch);
else
str = (char *) malloc (num->n_len + 1 + signch);
if (str == NULL)
return NULL;
/* The negative sign if needed. */
sptr = str;
if (signch)
*sptr++ = '-';
/* Load the whole number. */
nptr = num->n_value;
for (index = num->n_len; index > 0; index--)
*sptr++ = BCD_CHAR (*nptr++);
/* Now the fraction. */
if (num->n_scale > 0)
{
*sptr++ = '.';
for (index = 0; index < num->n_scale; index++)
*sptr++ = BCD_CHAR (*nptr++);
}
/* Terminate the string and return it! */
*sptr = '\0';
return (str);
}
/* new_num allocates a number and sets fields to known values. */
static bc_num
new_num (length, scale)
int length, scale;
{
bc_num temp;
temp = (bc_num) malloc (sizeof (bc_struct) + length + scale);
if (temp == NULL)
return NULL;
temp->n_sign = PLUS;
temp->n_len = length;
temp->n_scale = scale;
temp->n_refs = 1;
temp->n_value[0] = 0;
return temp;
}
/* Make a copy of a number! Just increments the reference count! */
static bc_num
copy_num (num)
bc_num num;
{
num->n_refs++;
return num;
}
/* Initialize a number NUM by making it a copy of zero. */
static void
init_num (num)
bc_num *num;
{
*num = copy_num (_zero_);
}
/* Compare two bc numbers. Return value is 0 if equal, -1 if N1 is less
than N2 and +1 if N1 is greater than N2. If USE_SIGN is false, just
compare the magnitudes. */
static int
_do_compare (n1, n2, use_sign, ignore_last)
bc_num n1, n2;
int use_sign;
int ignore_last;
{
char *n1ptr, *n2ptr;
int count;
/* First, compare signs. */
if (use_sign && n1->n_sign != n2->n_sign)
{
if (n1->n_sign == PLUS)
return (1); /* Positive N1 > Negative N2 */
else
return (-1); /* Negative N1 < Positive N1 */
}
/* Now compare the magnitude. */
if (n1->n_len != n2->n_len)
{
if (n1->n_len > n2->n_len)
{
/* Magnitude of n1 > n2. */
if (!use_sign || n1->n_sign == PLUS)
return (1);
else
return (-1);
}
else
{
/* Magnitude of n1 < n2. */
if (!use_sign || n1->n_sign == PLUS)
return (-1);
else
return (1);
}
}
/* If we get here, they have the same number of integer digits.
check the integer part and the equal length part of the fraction. */
count = n1->n_len + MIN (n1->n_scale, n2->n_scale);
n1ptr = n1->n_value;
n2ptr = n2->n_value;
while ((count > 0) && (*n1ptr == *n2ptr))
{
n1ptr++;
n2ptr++;
count--;
}
if (ignore_last && count == 1 && n1->n_scale == n2->n_scale)
return (0);
if (count != 0)
{
if (*n1ptr > *n2ptr)
{
/* Magnitude of n1 > n2. */
if (!use_sign || n1->n_sign == PLUS)
return (1);
else
return (-1);
}
else
{
/* Magnitude of n1 < n2. */
if (!use_sign || n1->n_sign == PLUS)
return (-1);
else
return (1);
}
}
/* They are equal up to the last part of the equal part of the fraction. */
if (n1->n_scale != n2->n_scale)
if (n1->n_scale > n2->n_scale)
{
for (count = n1->n_scale - n2->n_scale; count > 0; count--)
if (*n1ptr++ != 0)
{
/* Magnitude of n1 > n2. */
if (!use_sign || n1->n_sign == PLUS)
return (1);
else
return (-1);
}
}
else
{
for (count = n2->n_scale - n1->n_scale; count > 0; count--)
if (*n2ptr++ != 0)
{
/* Magnitude of n1 < n2. */
if (!use_sign || n1->n_sign == PLUS)
return (-1);
else
return (1);
}
}
/* They must be equal! */
return (0);
}
/* This is the "user callable" routine to compare numbers N1 and N2. */
static int
bc_compare (n1, n2)
bc_num n1, n2;
{
return _do_compare (n1, n2, TRUE, FALSE);
}
/* In some places we need to check if the number NUM is zero. */
static char
is_zero (num)
bc_num num;
{
int count;
char *nptr;
/* Quick check. */
if (num == _zero_)
return TRUE;
/* Initialize */
count = num->n_len + num->n_scale;
nptr = num->n_value;
/* The check */
while ((count > 0) && (*nptr++ == 0))
count--;
if (count != 0)
return FALSE;
else
return TRUE;
}
/* In some places we need to check if the number is negative. */
static char
is_neg (num)
bc_num num;
{
return num->n_sign == MINUS;
}
/* For many things, we may have leading zeros in a number NUM.
_rm_leading_zeros just moves the data to the correct
place and adjusts the length. */
static void
_rm_leading_zeros (num)
bc_num num;
{
int bytes;
char *dst, *src;
/* Do a quick check to see if we need to do it. */
if (*num->n_value != 0)
return;
/* The first "digit" is 0, find the first non-zero digit in the second
or greater "digit" to the left of the decimal place. */
bytes = num->n_len;
src = num->n_value;
while (bytes > 1 && *src == 0)
src++, bytes--;
num->n_len = bytes;
bytes += num->n_scale;
dst = num->n_value;
while (bytes-- > 0)
*dst++ = *src++;
}
/* Perform addition: N1 is added to N2 and the value is
returned. The signs of N1 and N2 are ignored.
SCALE_MIN is to set the minimum scale of the result. */
static bc_num
_do_add (n1, n2, scale_min)
bc_num n1, n2;
int scale_min;
{
bc_num sum;
int sum_scale, sum_digits;
char *n1ptr, *n2ptr, *sumptr;
int carry, n1bytes, n2bytes;
int count;
/* Prepare sum. */
sum_scale = MAX (n1->n_scale, n2->n_scale);
sum_digits = MAX (n1->n_len, n2->n_len) + 1;
sum = new_num (sum_digits, MAX (sum_scale, scale_min));
if (sum == NULL)
return NULL;
/* Zero extra digits made by scale_min. */
if (scale_min > sum_scale)
{
sumptr = (char *) (sum->n_value + sum_scale + sum_digits);
for (count = scale_min - sum_scale; count > 0; count--)
*sumptr++ = 0;
}
/* Start with the fraction part. Initialize the pointers. */
n1bytes = n1->n_scale;
n2bytes = n2->n_scale;
n1ptr = (char *) (n1->n_value + n1->n_len + n1bytes - 1);
n2ptr = (char *) (n2->n_value + n2->n_len + n2bytes - 1);
sumptr = (char *) (sum->n_value + sum_scale + sum_digits - 1);
/* Add the fraction part. First copy the longer fraction. */
if (n1bytes != n2bytes)
{
if (n1bytes > n2bytes)
while (n1bytes > n2bytes)
{
*sumptr-- = *n1ptr--;
n1bytes--;
}
else
while (n2bytes > n1bytes)
{
*sumptr-- = *n2ptr--;
n2bytes--;
}
}
/* Now add the remaining fraction part and equal size integer parts. */
n1bytes += n1->n_len;
n2bytes += n2->n_len;
carry = 0;
while ((n1bytes > 0) && (n2bytes > 0))
{
*sumptr = *n1ptr-- + *n2ptr-- + carry;
if (*sumptr > (BASE - 1))
{
carry = 1;
*sumptr -= BASE;
}
else
carry = 0;
sumptr--;
n1bytes--;
n2bytes--;
}
/* Now add carry the longer integer part. */
if (n1bytes == 0)
{