diff --git a/src/main.py b/src/main.py index 2e33cf5..774cc5d 100644 --- a/src/main.py +++ b/src/main.py @@ -2,20 +2,21 @@ import torch import torch.nn as nn import torch.optim as optim -from cnn import CNN from PIL import Image from torch.utils.data import DataLoader from torchvision import datasets, transforms +from cnn import CNN + # Step 1: Load MNIST Data and Preprocess -transform = transforms.Compose([ - transforms.ToTensor(), - transforms.Normalize((0.5,), (0.5,)) -]) +transform = transforms.Compose( + [transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))] +) -trainset = datasets.MNIST('.', download=True, train=True, transform=transform) +trainset = datasets.MNIST(".", download=True, train=True, transform=transform) trainloader = DataLoader(trainset, batch_size=64, shuffle=True) + # Step 2: Define the PyTorch Model class Net(nn.Module): def __init__(self): @@ -23,7 +24,7 @@ def __init__(self): self.fc1 = nn.Linear(28 * 28, 128) self.fc2 = nn.Linear(128, 64) self.fc3 = nn.Linear(64, 10) - + def forward(self, x): x = x.view(-1, 28 * 28) x = nn.functional.relu(self.fc1(x)) @@ -31,6 +32,7 @@ def forward(self, x): x = self.fc3(x) return nn.functional.log_softmax(x, dim=1) + # Step 3: Train the Model model = CNN() optimizer = optim.SGD(model.parameters(), lr=0.01) @@ -46,4 +48,4 @@ def forward(self, x): loss.backward() optimizer.step() -torch.save(model.state_dict(), "mnist_model.pth") \ No newline at end of file +torch.save(model.state_dict(), "mnist_model.pth")