From e9114882d92ca9b9c75471bae9989aff7864a194 Mon Sep 17 00:00:00 2001 From: "sweep-nightly[bot]" <131841235+sweep-nightly[bot]@users.noreply.github.com> Date: Sat, 25 Nov 2023 22:22:07 +0000 Subject: [PATCH] feat: Updated src/main.py --- src/main.py | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/src/main.py b/src/main.py index 243a31e..5f93d03 100644 --- a/src/main.py +++ b/src/main.py @@ -1,10 +1,10 @@ -from PIL import Image +import numpy as np import torch import torch.nn as nn import torch.optim as optim -from torchvision import datasets, transforms +from PIL import Image from torch.utils.data import DataLoader -import numpy as np +from torchvision import datasets, transforms # Step 1: Load MNIST Data and Preprocess transform = transforms.Compose([ @@ -24,14 +24,14 @@ def __init__(self): self.fc3 = nn.Linear(64, 10) def forward(self, x): - x = x.view(-1, 28 * 28) + x = nn.functional.relu(self.fc1(x)) x = nn.functional.relu(self.fc2(x)) x = self.fc3(x) return nn.functional.log_softmax(x, dim=1) # Step 3: Train the Model -model = Net() +model = CNN() optimizer = optim.SGD(model.parameters(), lr=0.01) criterion = nn.NLLLoss()