This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
forked from VITA-Group/DeblurGANv2
-
Notifications
You must be signed in to change notification settings - Fork 4
/
predict.py
124 lines (106 loc) · 4.44 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import os
from glob import glob
from typing import Optional
import cv2
import numpy as np
import torch
import yaml
from fire import Fire
from tqdm import tqdm
from aug import get_normalize
from models.networks import get_generator
class Predictor:
def __init__(self, weights_path: str, model_name: str = ''):
with open('config/config.yaml') as cfg:
config = yaml.load(cfg)
model = get_generator(model_name or config['model'])
model.load_state_dict(torch.load(weights_path)['model'])
self.model = model.cuda()
self.model.train(True)
# GAN inference should be in train mode to use actual stats in norm layers,
# it's not a bug
self.normalize_fn = get_normalize()
@staticmethod
def _array_to_batch(x):
x = np.transpose(x, (2, 0, 1))
x = np.expand_dims(x, 0)
return torch.from_numpy(x)
def _preprocess(self, x: np.ndarray, mask: Optional[np.ndarray]):
x, _ = self.normalize_fn(x, x)
if mask is None:
mask = np.ones_like(x, dtype=np.float32)
else:
mask = np.round(mask.astype('float32') / 255)
h, w, _ = x.shape
block_size = 32
min_height = (h // block_size + 1) * block_size
min_width = (w // block_size + 1) * block_size
pad_params = {'mode': 'constant',
'constant_values': 0,
'pad_width': ((0, min_height - h), (0, min_width - w), (0, 0))
}
x = np.pad(x, **pad_params)
mask = np.pad(mask, **pad_params)
return map(self._array_to_batch, (x, mask)), h, w
@staticmethod
def _postprocess(x: torch.Tensor) -> np.ndarray:
x, = x
x = x.detach().cpu().float().numpy()
x = (np.transpose(x, (1, 2, 0)) + 1) / 2.0 * 255.0
return x.astype('uint8')
def __call__(self, img: np.ndarray, mask: Optional[np.ndarray], ignore_mask=True) -> np.ndarray:
(img, mask), h, w = self._preprocess(img, mask)
with torch.no_grad():
inputs = [img.cuda()]
if not ignore_mask:
inputs += [mask]
pred = self.model(*inputs)
return self._postprocess(pred)[:h, :w, :]
def process_video(pairs, predictor, output_dir):
for video_filepath, mask in tqdm(pairs):
video_filename = os.path.basename(video_filepath)
output_filepath = os.path.join(output_dir, os.path.splitext(video_filename)[0]+'_deblur.mp4')
video_in = cv2.VideoCapture(video_filepath)
fps = video_in.get(cv2.CAP_PROP_FPS)
width = int(video_in.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(video_in.get(cv2.CAP_PROP_FRAME_HEIGHT))
total_frame_num = int(video_in.get(cv2.CAP_PROP_FRAME_COUNT))
video_out = cv2.VideoWriter(output_filepath, cv2.VideoWriter_fourcc(*'MP4V'), fps, (width, height))
tqdm.write(f'process {video_filepath} to {output_filepath}, {fps}fps, resolution: {width}x{height}')
for frame_num in tqdm(range(total_frame_num), desc=video_filename):
res, img = video_in.read()
if not res:
break
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
pred = predictor(img, mask)
pred = cv2.cvtColor(pred, cv2.COLOR_RGB2BGR)
video_out.write(pred)
def main(img_pattern: str,
mask_pattern: Optional[str] = None,
weights_path='best_fpn.h5',
out_dir='submit/',
side_by_side: bool = False,
video: bool = False):
def sorted_glob(pattern):
return sorted(glob(pattern))
imgs = sorted_glob(img_pattern)
masks = sorted_glob(mask_pattern) if mask_pattern is not None else [None for _ in imgs]
pairs = zip(imgs, masks)
names = sorted([os.path.basename(x) for x in glob(img_pattern)])
predictor = Predictor(weights_path=weights_path)
os.makedirs(out_dir, exist_ok=True)
if not video:
for name, pair in tqdm(zip(names, pairs), total=len(names)):
f_img, f_mask = pair
img, mask = map(cv2.imread, (f_img, f_mask))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
pred = predictor(img, mask)
if side_by_side:
pred = np.hstack((img, pred))
pred = cv2.cvtColor(pred, cv2.COLOR_RGB2BGR)
cv2.imwrite(os.path.join(out_dir, name),
pred)
else:
process_video(pairs, predictor, out_dir)
if __name__ == '__main__':
Fire(main)