-
Notifications
You must be signed in to change notification settings - Fork 154
/
examples-defos.tex
3246 lines (2955 loc) · 120 KB
/
examples-defos.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Deformation Problems}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
The goal of this chapter is to work out examples of the general theory
developed in the chapters Formal Deformation Theory,
Deformation Theory, The Cotangent Complex.
\medskip\noindent
Section 3 of the paper \cite{Sch} by Schlessinger discusses some
examples as well.
\section{Examples of deformation problems}
\label{section-examples}
\noindent
List of things that should go here:
\begin{enumerate}
\item Deformations of schemes:
\begin{enumerate}
\item The Rim-Schlessinger condition.
\item Computing the tangent space.
\item Computing the infinitesimal deformations.
\item The deformation category of an affine hypersurface.
\end{enumerate}
\item Deformations of sheaves (for example fix $X/S$, a finite type point
$s$ of $S$, and a quasi-coherent sheaf $\mathcal{F}_s$ over $X_s$).
\item Deformations of algebraic spaces (very similar to deformations
of schemes; maybe even easier?).
\item Deformations of maps (eg morphisms between schemes; you can fix
both or one of the target and/or source).
\item Add more here.
\end{enumerate}
\section{General outline}
\label{section-general}
\noindent
This section lays out the procedure for discussing the next few examples.
\medskip\noindent
Step I. For each section we fix a Noetherian ring $\Lambda$ and
we fix a finite ring map $\Lambda \to k$ where $k$ is a field.
As usual we let $\mathcal{C}_\Lambda = \mathcal{C}_{\Lambda, k}$
be our base category, see
Formal Deformation Theory,
Definition \ref{formal-defos-definition-CLambda}.
\medskip\noindent
Step II. In each section we define a category $\mathcal{F}$
cofibred in groupoids over $\mathcal{C}_\Lambda$. Occasionally
we will consider instead a functor
$F : \mathcal{C}_\Lambda \to \textit{Sets}$.
\medskip\noindent
Step III. We explain to what extent $\mathcal{F}$ satisfies
the Rim-Schlesssinger condition (RS) discussed in
Formal Deformation Theory, Section \ref{formal-defos-section-RS-condition}.
Similarly, we may discuss to what extent our $\mathcal{F}$
satisfies (S1) and (S2) or to what extent $F$ satisfies
the corresponding Schlessinger's conditions (H1) and (H2).
See Formal Deformation Theory, Section
\ref{formal-defos-section-schlessinger-conditions}.
\medskip\noindent
Step IV. Let $x_0$ be an object of $\mathcal{F}(k)$, in other words an object
of $\mathcal{F}$ over $k$. In this chapter we will use the notation
$$
\Deformationcategory_{x_0} = \mathcal{F}_{x_0}
$$
to denote the predeformation category constructed in
Formal Deformation Theory, Remark
\ref{formal-defos-remark-localize-cofibered-groupoid}.
If $\mathcal{F}$ satisfies (RS), then
$\Deformationcategory_{x_0}$ is a deformation category
(Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-localize-RS})
and satisfies (S1) and (S2)
(Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-RS-implies-S1-S2}).
If (S1) and (S2) are satisfied, then
an important question is whether the tangent space
$$
T\Deformationcategory_{x_0} = T_{x_0}\mathcal{F} = T\mathcal{F}_{x_0}
$$
(see Formal Deformation Theory, Remark
\ref{formal-defos-remark-tangent-space-cofibered-groupoid} and
Definition \ref{formal-defos-definition-tangent-space})
is finite dimensional. Namely, this insures that
$\Deformationcategory_{x_0}$ has a versal formal object
(Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-versal-object-existence}).
\medskip\noindent
Step V. If $\mathcal{F}$ passes Step IV, then the next question is whether
the $k$-vector space
$$
\text{Inf}(\Deformationcategory_{x_0}) = \text{Inf}_{x_0}(\mathcal{F})
$$
of infinitesimal automorphisms of $x_0$ is finite dimensional.
Namely, if true, this implies that
$\Deformationcategory_{x_0}$ admits a presentation by a
smooth prorepresentable groupoid in functors on $\mathcal{C}_\Lambda$, see
Formal Deformation Theory, Theorem
\ref{formal-defos-theorem-presentation-deformation-groupoid}.
\section{Finite projective modules}
\label{section-finite-projective-modules}
\noindent
This section is just a warmup. Of course finite projective modules
should not have any ``moduli''.
\begin{example}[Finite projective modules]
\label{example-finite-projective-modules}
Let $\mathcal{F}$ be the category defined as follows
\begin{enumerate}
\item an object is a pair $(A, M)$ consisting of an
object $A$ of $\mathcal{C}_\Lambda$ and a
finite projective $A$-module $M$, and
\item a morphism $(f, g) : (B, N) \to (A, M)$ consists of
a morphism $f : B \to A$ in $\mathcal{C}_\Lambda$ together
with a map $g : N \to M$ which is $f$-linear and induces
an isomorpism $N \otimes_{B, f} A \cong M$.
\end{enumerate}
The functor $p : \mathcal{F} \to \mathcal{C}_\Lambda$ sends $(A, M)$ to $A$
and $(f, g)$ to $f$. It is clear that $p$ is cofibred in groupoids.
Given a finite dimensional $k$-vector space $V$,
let $x_0 = (k, V)$ be the corresponding object of $\mathcal{F}(k)$.
We set
$$
\Deformationcategory_V = \mathcal{F}_{x_0}
$$
\end{example}
\noindent
Since every finite projective module over a local ring is finite free
(Algebra, Lemma \ref{algebra-lemma-finite-projective})
we see that
$$
\begin{matrix}
\text{isomorphism classes} \\
\text{of objects of }\mathcal{F}(A)
\end{matrix}
= \coprod\nolimits_{n \geq 0} \{*\}
$$
Although this means that the deformation theory of $\mathcal{F}$
is essentially trivial, we still work through the steps outlined
in Section \ref{section-general} to provide an easy example.
\begin{lemma}
\label{lemma-finite-projective-modules-RS}
Example \ref{example-finite-projective-modules}
satisfies the Rim-Schlessinger condition (RS).
In particular, $\Deformationcategory_V$ is a deformation category
for any finite dimensional vector space $V$ over $k$.
\end{lemma}
\begin{proof}
Let $A_1 \to A$ and $A_2 \to A$ be morphisms of $\mathcal{C}_\Lambda$.
Assume $A_2 \to A$ is surjective. According to
Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-RS-2-categorical}
it suffices to show that the functor
$\mathcal{F}(A_1 \times_A A_2) \to
\mathcal{F}(A_1) \times_{\mathcal{F}(A)} \mathcal{F}(A_2)$
is an equivalence of categories.
\medskip\noindent
Thus we have to show that the category of finite projective modules
over $A_1 \times_A A_2$ is equivalent to the fibre product
of the categories of finite projective modules over $A_1$ and $A_2$
over the category of finite projective modules over $A$.
This is a special case of More on Algebra, Lemma
\ref{more-algebra-lemma-finitely-presented-module-over-fibre-product}.
We recall that the inverse functor sends the triple
$(M_1, M_2, \varphi)$ where
$M_1$ is a finite projective $A_1$-module,
$M_2$ is a finite projective $A_2$-module, and
$\varphi : M_1 \otimes_{A_1} A \to M_2 \otimes_{A_2} A$
is an isomorphism of $A$-module, to the finite projective
$A_1 \times_A A_2$-module $M_1 \times_\varphi M_2$.
\end{proof}
\begin{lemma}
\label{lemma-finite-projective-modules-TI}
In Example \ref{example-finite-projective-modules}
let $V$ be a finite dimensional $k$-vector space. Then
$$
T\Deformationcategory_V = (0)
\quad\text{and}\quad
\text{Inf}(\Deformationcategory_V) = \text{End}_k(V)
$$
are finite dimensional.
\end{lemma}
\begin{proof}
With $\mathcal{F}$ as in Example \ref{example-finite-projective-modules}
set $x_0 = (k, V) \in \Ob(\mathcal{F}(k))$.
Recall that $T\Deformationcategory_V = T_{x_0}\mathcal{F}$
is the set of isomorphism
classes of pairs $(x, \alpha)$ consisting of an object $x$ of $\mathcal{F}
$ over the dual numbers $k[\epsilon]$ and a morphism
$\alpha : x \to x_0$ of $\mathcal{F}$ lying over $k[\epsilon] \to k$.
\medskip\noindent
Up to isomorphism, there is a unique pair $(M, \alpha)$ consisting of a
finite projective module $M$ over $k[\epsilon]$
and $k[\epsilon]$-linear map $\alpha : M \to V$
which induces an isomorphism $M \otimes_{k[\epsilon]} k \to V$.
For example, if $V = k^{\oplus n}$, then we take
$M = k[\epsilon]^{\oplus n}$ with the obvious map $\alpha$.
\medskip\noindent
Similarly, $\text{Inf}(\Deformationcategory_V) = \text{Inf}_{x_0}(\mathcal{F})$
is the set of automorphisms
of the trivial deformation $x'_0$ of $x_0$ over $k[\epsilon]$.
See Formal Deformation Theory, Definition
\ref{formal-defos-definition-infinitesimal-auts} for details.
\medskip\noindent
Given $(M, \alpha)$ as in the second paragraph, we see that an element of
$\text{Inf}_{x_0}(\mathcal{F})$ is an automorphism $\gamma : M \to M$ with
$\gamma \bmod \epsilon = \text{id}$. Then we can write
$\gamma = \text{id}_M + \epsilon \psi$ where
$\psi : M/\epsilon M \to M/\epsilon M$ is $k$-linear.
Using $\alpha$ we can think of $\psi$ as an element of
$\text{End}_k(V)$ and this finishes the proof.
\end{proof}
\section{Representations of a group}
\label{section-representations}
\noindent
The deformation theory of representations can be very interesting.
\begin{example}[Representations of a group]
\label{example-representations}
Let $\Gamma$ be a group.
Let $\mathcal{F}$ be the category defined as follows
\begin{enumerate}
\item an object is a triple $(A, M, \rho)$ consisting of an
object $A$ of $\mathcal{C}_\Lambda$, a finite projective $A$-module $M$,
and a homomorphism $\rho : \Gamma \to \text{GL}_A(M)$, and
\item a morphism $(f, g) : (B, N, \tau) \to (A, M, \rho)$ consists of
a morphism $f : B \to A$ in $\mathcal{C}_\Lambda$ together
with a map $g : N \to M$ which is $f$-linear and $\Gamma$-equivariant
and induces an isomorpism $N \otimes_{B, f} A \cong M$.
\end{enumerate}
The functor $p : \mathcal{F} \to \mathcal{C}_\Lambda$ sends $(A, M, \rho)$
to $A$ and $(f, g)$ to $f$. It is clear that $p$ is cofibred in groupoids.
Given a finite dimensional $k$-vector space $V$ and a representation
$\rho_0 : \Gamma \to \text{GL}_k(V)$,
let $x_0 = (k, V, \rho_0)$ be the corresponding object of $\mathcal{F}(k)$.
We set
$$
\Deformationcategory_{V, \rho_0} = \mathcal{F}_{x_0}
$$
\end{example}
\noindent
Since every finite projective module over a local ring is finite free
(Algebra, Lemma \ref{algebra-lemma-finite-projective})
we see that
$$
\begin{matrix}
\text{isomorphism classes} \\
\text{of objects of }\mathcal{F}(A)
\end{matrix}
=
\coprod\nolimits_{n \geq 0}\quad
\begin{matrix}
\text{GL}_n(A)\text{-conjugacy classes of}\\
\text{homomorphisms }\rho : \Gamma \to \text{GL}_n(A)
\end{matrix}
$$
This is already more interesting than the discussion in
Section \ref{section-finite-projective-modules}.
\begin{lemma}
\label{lemma-representations-RS}
Example \ref{example-representations}
satisfies the Rim-Schlessinger condition (RS).
In particular, $\Deformationcategory_{V, \rho_0}$ is a deformation category
for any finite dimensional representation
$\rho_0 : \Gamma \to \text{GL}_k(V)$.
\end{lemma}
\begin{proof}
Let $A_1 \to A$ and $A_2 \to A$ be morphisms of $\mathcal{C}_\Lambda$.
Assume $A_2 \to A$ is surjective. According to
Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-RS-2-categorical}
it suffices to show that the functor
$\mathcal{F}(A_1 \times_A A_2) \to
\mathcal{F}(A_1) \times_{\mathcal{F}(A)} \mathcal{F}(A_2)$
is an equivalence of categories.
\medskip\noindent
Consider an object
$$
((A_1, M_1, \rho_1), (A_2, M_2, \rho_2), (\text{id}_A, \varphi))
$$
of the category $\mathcal{F}(A_1) \times_{\mathcal{F}(A)} \mathcal{F}(A_2)$.
Then, as seen in the proof of Lemma \ref{lemma-finite-projective-modules-RS},
we can consider the finite projective
$A_1 \times_A A_2$-module $M_1 \times_\varphi M_2$.
Since $\varphi$ is compatible with the given actions we obtain
$$
\rho_1 \times \rho_2 : \Gamma \longrightarrow
\text{GL}_{A_1 \times_A A_2}(M_1 \times_\varphi M_2)
$$
Then $(M_1 \times_\varphi M_2, \rho_1 \times \rho_2)$
is an object of $\mathcal{F}(A_1 \times_A A_2)$.
This construction determines a quasi-inverse to our functor.
\end{proof}
\begin{lemma}
\label{lemma-representations-TI}
In Example \ref{example-representations} let
$\rho_0 : \Gamma \to \text{GL}_k(V)$
be a finite dimensional representation. Then
$$
T\Deformationcategory_{V, \rho_0} = \Ext^1_{k[\Gamma]}(V, V) =
H^1(\Gamma, \text{End}_k(V))
\quad\text{and}\quad
\text{Inf}(\Deformationcategory_{V, \rho_0}) = H^0(\Gamma, \text{End}_k(V))
$$
Thus $\text{Inf}(\Deformationcategory_{V, \rho_0})$
is always finite dimensional
and $T\Deformationcategory_{V, \rho_0}$ is finite dimensional
if $\Gamma$ is finitely generated.
\end{lemma}
\begin{proof}
We first deal with the infinitesimal automorphisms.
Let $M = V \otimes_k k[\epsilon]$ with induced action
$\rho_0' : \Gamma \to \text{GL}_n(M)$.
Then an infinitesimal automorphism, i.e., an element of
$\text{Inf}(\Deformationcategory_{V, \rho_0})$,
is given by an automorphism
$\gamma = \text{id} + \epsilon \psi : M \to M$
as in the proof of Lemma \ref{lemma-finite-projective-modules-TI},
where moreover $\psi$ has to commute
with the action of $\Gamma$ (given by $\rho_0$).
Thus we see that
$$
\text{Inf}(\Deformationcategory_{V, \rho_0}) = H^0(\Gamma, \text{End}_k(V))
$$
as predicted in the lemma.
\medskip\noindent
Next, let $(k[\epsilon], M, \rho)$ be an object of $\mathcal{F}$
over $k[\epsilon]$ and let $\alpha : M \to V$ be a $\Gamma$-equivariant map
inducing an isomorphism $M/\epsilon M \to V$.
Since $M$ is free as a $k[\epsilon]$-module we obtain
an extension of $\Gamma$-modules
$$
0 \to V \to M \xrightarrow{\alpha} V \to 0
$$
We omit the detailed construction of the map on the left.
Conversely, if we have an extension of $\Gamma$-modules as
above, then we can use this to make a $k[\epsilon]$-module
structure on $M$ and get an object of $\mathcal{F}(k[\epsilon])$
together with a map $\alpha$ as above.
It follows that
$$
T\Deformationcategory_{V, \rho_0} = \Ext^1_{k[\Gamma]}(V, V)
$$
as predicted in the lemma. This is equal to
$H^1(\Gamma, \text{End}_k(V))$ by
\'Etale Cohomology, Lemma \ref{etale-cohomology-lemma-ext-modules-hom}.
\medskip\noindent
The statement on dimensions follows from
\'Etale Cohomology, Lemma
\ref{etale-cohomology-lemma-finite-dim-group-cohomology}.
\end{proof}
\noindent
In Example \ref{example-representations} if $\Gamma$ is finitely generated
and $(V, \rho_0)$ is a finite dimensional representation of $\Gamma$
over $k$, then $\Deformationcategory_{V, \rho_0}$
admits a presentation by a smooth prorepresentable groupoid in functors
over $\mathcal{C}_\Lambda$
and a fortiori has a (minimal) versal formal object. This follows
from Lemmas \ref{lemma-representations-RS} and \ref{lemma-representations-TI}
and the general discussion in Section \ref{section-general}.
\begin{lemma}
\label{lemma-representations-hull}
In Example \ref{example-representations} assume $\Gamma$ finitely generated.
Let $\rho_0 : \Gamma \to \text{GL}_k(V)$ be a finite dimensional representation.
Assume $\Lambda$ is a complete local ring with residue field $k$
(the classical case). Then the functor
$$
F : \mathcal{C}_\Lambda \longrightarrow \textit{Sets},\quad
A \longmapsto \Ob(\Deformationcategory_{V, \rho_0}(A))/\cong
$$
of isomorphism classes of objects has a hull. If
$H^0(\Gamma, \text{End}_k(V)) = k$, then $F$ is
prorepresentable.
\end{lemma}
\begin{proof}
The existence of a hull follows from Lemmas \ref{lemma-representations-RS} and
\ref{lemma-representations-TI} and
Formal Deformation Theory, Lemma \ref{formal-defos-lemma-RS-implies-S1-S2}
and Remark \ref{formal-defos-remark-compose-minimal-into-iso-classes}.
\medskip\noindent
Assume $H^0(\Gamma, \text{End}_k(V)) = k$. To see that $F$
is prorepresentable it suffices to show that $F$ is a
deformation functor, see Formal Deformation Theory, Theorem
\ref{formal-defos-theorem-Schlessinger-prorepresentability}.
In other words, we have to show $F$ satisfies (RS).
For this we can use the criterion of Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-RS-associated-functor}.
The required surjectivity of automorphism groups will follow if we
show that
$$
A \cdot \text{id}_M =
\text{End}_{A[\Gamma]}(M)
$$
for any object $(A, M, \rho)$ of $\mathcal{F}$ such that
$M \otimes_A k$ is isomorphic to $V$ as a representation of $\Gamma$.
Since the left hand side is contained in the right hand side,
it suffices to show
$\text{length}_A \text{End}_{A[\Gamma]}(M) \leq \text{length}_A A$.
Choose pairwise distinct ideals
$(0) = I_n \subset \ldots \subset I_1 \subset A$
with $n = \text{length}(A)$. By correspondingly filtering
$M$, we see that it suffices to prove $\Hom_{A[\Gamma]}(M, I_tM/I_{t + 1}M)$
has length $1$. Since $I_tM/I_{t + 1}M \cong M \otimes_A k$
and since any $A[\Gamma]$-module map $M \to M \otimes_A k$ factors
uniquely through the quotient map $M \to M \otimes_A k$
to give an element of
$$
\text{End}_{A[\Gamma]}(M \otimes_A k) = \text{End}_{k[\Gamma]}(V) = k
$$
we conclude.
\end{proof}
\section{Continuous representations}
\label{section-continuous-representations}
\noindent
A very interesting thing one can do is to take an infinite Galois
group and study the deformation theory of its representations, see
\cite{Mazur-deforming}.
\begin{example}[Representations of a topological group]
\label{example-continuous-representations}
Let $\Gamma$ be a topological group.
Let $\mathcal{F}$ be the category defined as follows
\begin{enumerate}
\item an object is a triple $(A, M, \rho)$ consisting of an
object $A$ of $\mathcal{C}_\Lambda$, a finite projective $A$-module $M$,
and a continuous homomorphism $\rho : \Gamma \to \text{GL}_A(M)$
where $\text{GL}_A(M)$ is given the discrete topology\footnote{An alternative
would be to require the $A$-module $M$ with $G$-action given by $\rho$
is an $A\text{-}G$-module as defined in \'Etale Cohomology, Definition
\ref{etale-cohomology-definition-G-module-continuous}. However,
since $M$ is a finite $A$-module, this is equivalent.}, and
\item a morphism $(f, g) : (B, N, \tau) \to (A, M, \rho)$ consists of
a morphism $f : B \to A$ in $\mathcal{C}_\Lambda$ together
with a map $g : N \to M$ which is $f$-linear and $\Gamma$-equivariant
and induces an isomorpism $N \otimes_{B, f} A \cong M$.
\end{enumerate}
The functor $p : \mathcal{F} \to \mathcal{C}_\Lambda$ sends $(A, M, \rho)$
to $A$ and $(f, g)$ to $f$. It is clear that $p$ is cofibred in groupoids.
Given a finite dimensional $k$-vector space $V$ and a
continuous representation $\rho_0 : \Gamma \to \text{GL}_k(V)$,
let $x_0 = (k, V, \rho_0)$ be the corresponding object of $\mathcal{F}(k)$.
We set
$$
\Deformationcategory_{V, \rho_0} = \mathcal{F}_{x_0}
$$
\end{example}
\noindent
Since every finite projective module over a local ring is finite free
(Algebra, Lemma \ref{algebra-lemma-finite-projective})
we see that
$$
\begin{matrix}
\text{isomorphism classes} \\
\text{of objects of }\mathcal{F}(A)
\end{matrix}
=
\coprod\nolimits_{n \geq 0}\quad
\begin{matrix}
\text{GL}_n(A)\text{-conjugacy classes of}\\
\text{continuous homomorphisms }\rho : \Gamma \to \text{GL}_n(A)
\end{matrix}
$$
\begin{lemma}
\label{lemma-continuous-representations-RS}
Example \ref{example-continuous-representations}
satisfies the Rim-Schlessinger condition (RS).
In particular, $\Deformationcategory_{V, \rho_0}$ is a deformation category
for any finite dimensional continuous representation
$\rho_0 : \Gamma \to \text{GL}_k(V)$.
\end{lemma}
\begin{proof}
The proof is exactly the same as the proof of
Lemma \ref{lemma-representations-RS}.
\end{proof}
\begin{lemma}
\label{lemma-continuous-representations-TI}
In Example \ref{example-continuous-representations} let
$\rho_0 : \Gamma \to \text{GL}_k(V)$ be a finite dimensional
continuous representation. Then
$$
T\Deformationcategory_{V, \rho_0} = H^1(\Gamma, \text{End}_k(V))
\quad\text{and}\quad
\text{Inf}(\Deformationcategory_{V, \rho_0}) = H^0(\Gamma, \text{End}_k(V))
$$
Thus $\text{Inf}(\Deformationcategory_{V, \rho_0})$
is always finite dimensional
and $T\Deformationcategory_{V, \rho_0}$ is finite dimensional
if $\Gamma$ is topologically finitely generated.
\end{lemma}
\begin{proof}
The proof is exactly the same as the proof of
Lemma \ref{lemma-representations-TI}.
\end{proof}
\noindent
In Example \ref{example-continuous-representations} if $\Gamma$
is topologically finitely generated
and $(V, \rho_0)$ is a finite dimensional continuous representation of $\Gamma$
over $k$, then $\Deformationcategory_{V, \rho_0}$
admits a presentation by a smooth prorepresentable groupoid in functors
over $\mathcal{C}_\Lambda$
and a fortiori has a (minimal) versal formal object. This follows
from Lemmas \ref{lemma-continuous-representations-RS} and
\ref{lemma-continuous-representations-TI}
and the general discussion in Section \ref{section-general}.
\begin{lemma}
\label{lemma-continuous-representations-hull}
In Example \ref{example-continuous-representations} assume $\Gamma$
is topologically finitely generated.
Let $\rho_0 : \Gamma \to \text{GL}_k(V)$ be a finite dimensional representation.
Assume $\Lambda$ is a complete local ring with residue field $k$
(the classical case). Then the functor
$$
F : \mathcal{C}_\Lambda \longrightarrow \textit{Sets},\quad
A \longmapsto \Ob(\Deformationcategory_{V, \rho_0}(A))/\cong
$$
of isomorphism classes of objects has a hull. If
$H^0(\Gamma, \text{End}_k(V)) = k$, then $F$ is
prorepresentable.
\end{lemma}
\begin{proof}
The proof is exactly the same as the proof of
Lemma \ref{lemma-representations-hull}.
\end{proof}
\section{Graded algebras}
\label{section-graded-algebras}
\noindent
We will use the example in this section in the proof that the stack of
polarized proper schemes is an algebraic stack. For this reason we will
consider commutative graded algebras whose homogeneous parts are
finite projective modules (sometimes called ``locally finite'').
\begin{example}[Graded algebras]
\label{example-graded-algebras}
Let $\mathcal{F}$ be the category defined as follows
\begin{enumerate}
\item an object is a pair $(A, P)$ consisting of an
object $A$ of $\mathcal{C}_\Lambda$ and a graded $A$-algebra $P$
such that $P_d$ is a finite projective $A$-module for all $d \geq 0$, and
\item a morphism $(f, g) : (B, Q) \to (A, P)$ consists of
a morphism $f : B \to A$ in $\mathcal{C}_\Lambda$ together
with a map $g : Q \to P$ which is $f$-linear and induces an
isomorpism $Q \otimes_{B, f} A \cong P$.
\end{enumerate}
The functor $p : \mathcal{F} \to \mathcal{C}_\Lambda$ sends $(A, P)$
to $A$ and $(f, g)$ to $f$. It is clear that $p$ is cofibred in groupoids.
Given a graded $k$-algebra $P$ with $\dim_k(P_d) < \infty$ for all
$d \geq 0$, let $x_0 = (k, P)$ be the corresponding object of $\mathcal{F}(k)$.
We set
$$
\Deformationcategory_P = \mathcal{F}_{x_0}
$$
\end{example}
\begin{lemma}
\label{lemma-graded-algebras-RS}
Example \ref{example-graded-algebras}
satisfies the Rim-Schlessinger condition (RS).
In particular, $\Deformationcategory_P$ is a deformation category
for any graded $k$-algebra $P$.
\end{lemma}
\begin{proof}
Let $A_1 \to A$ and $A_2 \to A$ be morphisms of $\mathcal{C}_\Lambda$.
Assume $A_2 \to A$ is surjective. According to
Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-RS-2-categorical}
it suffices to show that the functor
$\mathcal{F}(A_1 \times_A A_2) \to
\mathcal{F}(A_1) \times_{\mathcal{F}(A)} \mathcal{F}(A_2)$
is an equivalence of categories.
\medskip\noindent
Consider an object
$$
((A_1, P_1), (A_2, P_2), (\text{id}_A, \varphi))
$$
of the category $\mathcal{F}(A_1) \times_{\mathcal{F}(A)} \mathcal{F}(A_2)$.
Then we consider $P_1 \times_\varphi P_2$. Since
$\varphi : P_1 \otimes_{A_1} A \to P_2 \otimes_{A_2} A$
is an isomorphism of graded algebras, we see that the graded pieces
of $P_1 \times_\varphi P_2$ are finite projective $A_1 \times_A A_2$-modules,
see proof of Lemma \ref{lemma-finite-projective-modules-RS}.
Thus $P_1 \times_\varphi P_2$ is an object of $\mathcal{F}(A_1 \times_A A_2)$.
This construction determines a quasi-inverse to our functor
and the proof is complete.
\end{proof}
\begin{lemma}
\label{lemma-graded-algebras-TI}
In Example \ref{example-graded-algebras} let $P$ be a graded $k$-algebra.
Then
$$
T\Deformationcategory_P
\quad\text{and}\quad
\text{Inf}(\Deformationcategory_P) = \text{Der}_k(P, P)
$$
are finite dimensional if $P$ is finitely generated over $k$.
\end{lemma}
\begin{proof}
We first deal with the infinitesimal automorphisms.
Let $Q = P \otimes_k k[\epsilon]$.
Then an element of $\text{Inf}(\Deformationcategory_P)$
is given by an automorphism
$\gamma = \text{id} + \epsilon \delta : Q \to Q$
as above where now $\delta : P \to P$.
The fact that $\gamma$ is graded implies that
$\delta$ is homogeneous of degree $0$.
The fact that $\gamma$ is $k$-linear implies that
$\delta$ is $k$-linear.
The fact that $\gamma$ is multiplicative implies that
$\delta$ is a $k$-derivation.
Conversely, given a $k$-derivation $\delta : P \to P$
homogeneous of degree $0$, we obtain an automorphism
$\gamma = \text{id} + \epsilon \delta$ as above.
Thus we see that
$$
\text{Inf}(\Deformationcategory_P) = \text{Der}_k(P, P)
$$
as predicted in the lemma.
Clearly, if $P$ is generated in degrees $P_i$,
$0 \leq i \leq N$, then $\delta$ is determined by
the linear maps $\delta_i : P_i \to P_i$ for
$0 \leq i \leq N$ and we see that
$$
\dim_k \text{Der}_k(P, P) < \infty
$$
as desired.
\medskip\noindent
To finish the proof of the lemma we show that there is a finite
dimensional deformation space. To do this we
choose a presentation
$$
k[X_1, \ldots, X_n]/(F_1, \ldots, F_m) \longrightarrow P
$$
of graded $k$-algebras where $\deg(X_i) = d_i$ and
$F_j$ is homogeneous of degree $e_j$.
Let $Q$ be any graded $k[\epsilon]$-algebra
finite free in each degree which comes with an isomorphsm
$\alpha : Q/\epsilon Q \to P$ so that $(Q, \alpha)$ defines
an element of $T\Deformationcategory_P$.
Choose a homogeneous element $q_i \in Q$ of degree $d_i$
mapping to the image of $X_i$ in $P$.
Then we obtain
$$
k[\epsilon][X_1, \ldots, X_n] \longrightarrow Q,\quad
X_i \longmapsto q_i
$$
and since $P = Q/\epsilon Q$ this map is surjective by Nakayama's lemma.
A small diagram chase shows we can choose homogeneous elements
$F_{\epsilon, j} \in k[\epsilon][X_1, \ldots, X_n]$ of degree $e_j$
mapping to zero in $Q$ and mapping to $F_j$ in $k[X_1, \ldots, X_n]$.
Then
$$
k[\epsilon][X_1, \ldots, X_n]/(F_{\epsilon, 1}, \ldots, F_{\epsilon, m})
\longrightarrow Q
$$
is a presentation of $Q$ by flatness of $Q$ over $k[\epsilon]$.
Write
$$
F_{\epsilon, j} = F_j + \epsilon G_j
$$
There is some ambiguity in the vector $(G_1, \ldots, G_m)$.
First, using different choices of $F_{\epsilon, j}$
we can modify $G_j$ by an arbitrary element of degree $e_j$
in the kernel of $k[X_1, \ldots, X_n] \to P$.
Hence, instead of $(G_1, \ldots, G_m)$, we remember the
element
$$
(g_1, \ldots, g_m) \in P_{e_1} \oplus \ldots \oplus P_{e_m}
$$
where $g_j$ is the image of $G_j$ in $P_{e_j}$.
Moreover, if we change our choice of $q_i$ into $q_i + \epsilon p_i$
with $p_i$ of degree $d_i$ then a computation (omitted) shows
that $g_j$ changes into
$$
g_j^{new} = g_j - \sum\nolimits_{i = 1}^n p_i \partial F_j / \partial X_i
$$
We conclude that the isomorphism class of $Q$ is determined by the
image of the vector $(G_1, \ldots, G_m)$ in the $k$-vector space
$$
W = \Coker(P_{d_1} \oplus \ldots \oplus P_{d_n}
\xrightarrow{(\frac{\partial F_j}{\partial X_i})}
P_{e_1} \oplus \ldots \oplus P_{e_m})
$$
In this way we see that we obtain an injection
$$
T\Deformationcategory_P \longrightarrow W
$$
Since $W$ visibly has finite dimension, we conclude that the lemma is true.
\end{proof}
\noindent
In Example \ref{example-graded-algebras} if $P$ is a finitely generated
graded $k$-algebra, then $\Deformationcategory_P$
admits a presentation by a smooth prorepresentable groupoid in functors
over $\mathcal{C}_\Lambda$
and a fortiori has a (minimal) versal formal object. This follows
from Lemmas \ref{lemma-graded-algebras-RS} and
\ref{lemma-graded-algebras-TI}
and the general discussion in Section \ref{section-general}.
\begin{lemma}
\label{lemma-graded-algebras-hull}
In Example \ref{example-graded-algebras} assume $P$ is a finitely generated
graded $k$-algebra. Assume $\Lambda$ is a complete local ring
with residue field $k$
(the classical case). Then the functor
$$
F : \mathcal{C}_\Lambda \longrightarrow \textit{Sets},\quad
A \longmapsto \Ob(\Deformationcategory_P(A))/\cong
$$
of isomorphism classes of objects has a hull.
\end{lemma}
\begin{proof}
This follows immediately from Lemmas \ref{lemma-graded-algebras-RS} and
\ref{lemma-graded-algebras-TI} and
Formal Deformation Theory, Lemma \ref{formal-defos-lemma-RS-implies-S1-S2}
and Remark \ref{formal-defos-remark-compose-minimal-into-iso-classes}.
\end{proof}
\section{Rings}
\label{section-rings}
\noindent
The deformation theory of rings is the same as the deformation theory
of affine schemes. For rings and schemes when we talk about deformations
it means we are thinking about {\it flat} deformations.
\begin{example}[Rings]
\label{example-rings}
Let $\mathcal{F}$ be the category defined as follows
\begin{enumerate}
\item an object is a pair $(A, P)$ consisting of an
object $A$ of $\mathcal{C}_\Lambda$ and a flat $A$-algebra $P$, and
\item a morphism $(f, g) : (B, Q) \to (A, P)$ consists of
a morphism $f : B \to A$ in $\mathcal{C}_\Lambda$ together
with a map $g : Q \to P$ which is $f$-linear and induces an
isomorpism $Q \otimes_{B, f} A \cong P$.
\end{enumerate}
The functor $p : \mathcal{F} \to \mathcal{C}_\Lambda$ sends $(A, P)$
to $A$ and $(f, g)$ to $f$. It is clear that $p$ is cofibred in groupoids.
Given a $k$-algebra $P$, let $x_0 = (k, P)$ be the corresponding object
of $\mathcal{F}(k)$. We set
$$
\Deformationcategory_P = \mathcal{F}_{x_0}
$$
\end{example}
\begin{lemma}
\label{lemma-rings-RS}
Example \ref{example-rings}
satisfies the Rim-Schlessinger condition (RS).
In particular, $\Deformationcategory_P$ is a deformation category
for any $k$-algebra $P$.
\end{lemma}
\begin{proof}
Let $A_1 \to A$ and $A_2 \to A$ be morphisms of $\mathcal{C}_\Lambda$.
Assume $A_2 \to A$ is surjective. According to
Formal Deformation Theory, Lemma
\ref{formal-defos-lemma-RS-2-categorical}
it suffices to show that the functor
$\mathcal{F}(A_1 \times_A A_2) \to
\mathcal{F}(A_1) \times_{\mathcal{F}(A)} \mathcal{F}(A_2)$
is an equivalence of categories.
This is a special case of More on Algebra, Lemma
\ref{more-algebra-lemma-properties-algebras-over-fibre-product}.
\end{proof}
\begin{lemma}
\label{lemma-rings-TI}
In Example \ref{example-rings} let $P$ be a $k$-algebra. Then
$$
T\Deformationcategory_P = \text{Ext}^1_P(\NL_{P/k}, P)
\quad\text{and}\quad
\text{Inf}(\Deformationcategory_P) = \text{Der}_k(P, P)
$$
\end{lemma}
\begin{proof}
Recall that $\text{Inf}(\Deformationcategory_P)$ is the set of
automorphisms of the trivial deformation
$P[\epsilon] = P \otimes_k k[\epsilon]$ of $P$ to $k[\epsilon]$
equal to the identity modulo $\epsilon$.
By Deformation Theory, Lemma \ref{defos-lemma-huge-diagram}
this is equal to $\Hom_P(\Omega_{P/k}, P)$ which in turn is
equal to $\text{Der}_k(P, P)$ by
Algebra, Lemma \ref{algebra-lemma-universal-omega}.
\medskip\noindent
Recall that $T\Deformationcategory_P$ is the set of isomorphism classes
of flat deformations $Q$ of $P$ to $k[\epsilon]$, more precisely,
the set of isomorphism classes of $\Deformationcategory_P(k[\epsilon])$.
Recall that a $k[\epsilon]$-algebra $Q$ with $Q/\epsilon Q = P$
is flat over $k[\epsilon]$ if and only if
$$
0 \to P \xrightarrow{\epsilon} Q \to P \to 0
$$
is exact. This is proven in More on Morphisms, Lemma
\ref{more-morphisms-lemma-deform} and more generally in
Deformation Theory, Lemma \ref{defos-lemma-deform-module}.
Thus we may apply
Deformation Theory, Lemma \ref{defos-lemma-choices}
to see that the set of isomorphism classes of such
deformations is equal to $\text{Ext}^1_P(\NL_{P/k}, P)$.
\end{proof}
\begin{lemma}
\label{lemma-smooth}
In Example \ref{example-rings} let $P$ be a smooth $k$-algebra. Then
$T\Deformationcategory_P = (0)$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-rings-TI} we have to show
$\text{Ext}^1_P(\NL_{P/k}, P) = (0)$.
Since $k \to P$ is smooth $\NL_{P/k}$ is quasi-isomorphic to the
complex consisting of a finite projective
$P$-module placed in degree $0$.
\end{proof}
\begin{lemma}
\label{lemma-finite-type-rings-TI}
In Lemma \ref{lemma-rings-TI} if $P$ is a finite type $k$-algebra, then
\begin{enumerate}
\item $\text{Inf}(\Deformationcategory_P)$ is finite dimensional if and only if
$\dim(P) = 0$, and
\item $T\Deformationcategory_P$ is finite dimensional if
$\Spec(P) \to \Spec(k)$ is smooth except at a finite number of points.
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (1). We view $\text{Der}_k(P, P)$ as a $P$-module.
If it has finite dimension over $k$, then it has finite length
as a $P$-module, hence it is supported in finitely many
closed points of $\Spec(P)$
(Algebra, Lemma \ref{algebra-lemma-simple-pieces}).
Since $\text{Der}_k(P, P) = \Hom_P(\Omega_{P/k}, P)$
we see that
$\text{Der}_k(P, P)_\mathfrak p = \text{Der}_k(P_\mathfrak p, P_\mathfrak p)$
for any prime $\mathfrak p \subset P$
(this uses Algebra, Lemmas
\ref{algebra-lemma-differentials-localize},
\ref{algebra-lemma-differentials-finitely-presented}, and
\ref{algebra-lemma-hom-from-finitely-presented}).
Let $\mathfrak p$ be a minimal prime ideal of $P$
corresponding to an irreducible component of dimension $d > 0$.
Then $P_\mathfrak p$ is an Artinian local ring
essentially of finite type over $k$ with residue field
and $\Omega_{P_\mathfrak p/k}$ is nonzero for example by
Algebra, Lemma \ref{algebra-lemma-characterize-smooth-over-field}.
Any nonzero finite module over an Artinian local ring
has both a sub and a quotient module isomorphic to the residue field.
Thus we find that
$\text{Der}_k(P_\mathfrak p, P_\mathfrak p) =
\Hom_{P_\mathfrak p}(\Omega_{P_\mathfrak p/k}, P_\mathfrak p)$
is nonzero too. Combining all of the above we find that (1) is true.
\medskip\noindent
Proof of (2). For a prime $\mathfrak p$ of $P$ we will use that
$\NL_{P_\mathfrak p/k} = (\NL_{P/k})_\mathfrak p$
(Algebra, Lemma \ref{algebra-lemma-localize-NL})
and we will
use that
$\text{Ext}_P^1(\NL_{P/k}, P)_\mathfrak p =
\text{Ext}_{P_\mathfrak p}^1(\NL_{P_\mathfrak p/k}, P_\mathfrak p)$
(More on Algebra, Lemma
\ref{more-algebra-lemma-pseudo-coherence-and-base-change-ext}).
Given a prime $\mathfrak p \subset P$
then $k \to P$ is smooth at $\mathfrak p$ if and only if
$(\NL_{P/k})_\mathfrak p$ is quasi-isomorphic
to a finite projective module placed in degree $0$ (this follows
immediately from the definition of a smooth ring map but it also
follows from the stronger Algebra, Lemma \ref{algebra-lemma-smooth-at-point}).
\medskip\noindent
Assume that $P$ is smooth over $k$ at all but finitely many primes.
Then these ``bad'' primes are maximal ideals
$\mathfrak m_1, \ldots, \mathfrak m_n \subset P$ by
Algebra, Lemma \ref{algebra-lemma-finite-type-algebra-finite-nr-primes}
and the fact that the ``bad'' primes form a closed subset of $\Spec(P)$.
For $\mathfrak p \not \in \{\mathfrak m_1, \ldots, \mathfrak m_n\}$
we have $\text{Ext}^1_P(\NL_{P/k}, P)_\mathfrak p = 0$ by the results above.
Thus $\text{Ext}^1_P(\NL_{P/k}, P)$ is a finite $P$-module
whose support is contained in $\{\mathfrak m_1, \ldots, \mathfrak m_r\}$.
By Algebra, Proposition
\ref{algebra-proposition-minimal-primes-associated-primes}
for example, we find that the dimension over $k$ of
$\text{Ext}^1_P(\NL_{P/k}, P)$ is a finite integer combination
of $\dim_k \kappa(\mathfrak m_i)$ and hence finite by
the Hilbert Nullstellensatz
(Algebra, Theorem \ref{algebra-theorem-nullstellensatz}).
\end{proof}
\noindent
In Example \ref{example-rings}, let $P$ be a finite type
$k$-algebra. Then $\Deformationcategory_P$
admits a presentation by a smooth prorepresentable groupoid in functors
over $\mathcal{C}_\Lambda$ if and only if $\dim(P) = 0$.
Furthermore, $\Deformationcategory_P$ has a versal formal
object if $\Spec(P) \to \Spec(k)$ has finitely many
singular points. This follows from Lemmas \ref{lemma-rings-RS} and
\ref{lemma-finite-type-rings-TI}
and the general discussion in Section \ref{section-general}.
\begin{lemma}
\label{lemma-rings-hull}
In Example \ref{example-rings} assume $P$ is a finite type
$k$-algebra such that $\Spec(P) \to \Spec(k)$ is smooth except
at a finite number of points.
Assume $\Lambda$ is a complete local ring with residue field $k$
(the classical case). Then the functor
$$
F : \mathcal{C}_\Lambda \longrightarrow \textit{Sets},\quad
A \longmapsto \Ob(\Deformationcategory_P(A))/\cong