-
Notifications
You must be signed in to change notification settings - Fork 11
/
train_ml-1m.py
102 lines (98 loc) · 2.75 KB
/
train_ml-1m.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from engine import setup_args, Engine
import torch
import os
import random
import numpy as np
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
torch.backends.cudnn.enabled = True
if __name__ == '__main__':
parser = setup_args()
parser.set_defaults(
alias='test',
tensorboard='./tmp/runs/{factorizer}/{data_type}',
##########
## data ##
##########
data_type='ml-1m',
data_path='./data/{data_type}/',
load_in_queue=False,
category_only=False,
rebuild_cache=False,
eval_res_path='./tmp/res/{factorizer}/{data_type}/{alias}/{epoch_idx}.csv',
emb_save_path='./tmp/embedding/{factorizer}/{data_type}/{alias}/{num_parameter}',
######################
## train/test split ##
######################
test_ratio=0.1,
valid_ratio=1/9,
##########################
## Devices & Efficiency ##
##########################
use_cuda=True,
early_stop=40,
log_interval=1,
display_interval=500,
eval_interval=5, # 10 epochs between 2 evaluations
device_ids_test=[0],
device_id=0,
batch_size_train=1024,
batch_size_valid=1024,
batch_size_test=1024,
###########
## Model ##
###########
factorizer='fm',
model='fm',
fm_lr=1e-3,
# Deep
mlp_dims=[100, 100],
# AutoInt
has_residual=True,
full_part=True,
num_heads=2,
num_layers=3,
att_dropout=0.4,
atten_embed_dim=64,
# optimizer setting
fm_optimizer='adam',
fm_amsgrad=False,
fm_eps=1e-8,
fm_l2_regularization=1e-5,
fm_betas=(0.9, 0.999),
fm_grad_clip=100, # 0.1
fm_lr_exp_decay=1,
l2_penalty=0,
#########
## PEP ##
#########
latent_dim=32,
threshold_type='feature_dim',
g_type='sigmoid',
gk=1,
threshold_init=-15,
candidate_p=[50000, 30000, 20000],
)
opt = parser.parse_args(args=[])
opt = vars(opt)
# rename alias
# rename alias
opt['alias'] = '{}_{}_BaseDim{}_bsz{}_lr_{}_optim_{}_thresholdType{}_thres_init{}_{}-{}_l2_penalty{}'.format(
opt['model'].upper(),
opt['alias'],
opt['latent_dim'],
opt['batch_size_train'],
opt['fm_lr'],
opt['fm_optimizer'],
opt['threshold_type'].upper(),
opt['threshold_init'],
opt['g_type'],
opt['gk'],
opt['l2_penalty']
)
print(opt['alias'])
random.seed(opt['seed'])
# np.random.seed(opt['seed'])
torch.manual_seed(opt['seed'])
torch.cuda.manual_seed_all(opt['seed'])
engine = Engine(opt)
engine.train()