-
Notifications
You must be signed in to change notification settings - Fork 11
/
engine.py
243 lines (210 loc) · 11.1 KB
/
engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import os
import numpy as np
import pandas as pd
from datetime import datetime
from argparse import ArgumentParser
from tensorboardX import SummaryWriter
from models.factorizer import setup_factorizer
from data_loader.data_loader import setup_generator
from utils.evaluate import evaluate_fm
def setup_args(parser=None):
""" Set up arguments for the Engine
return:
python dictionary
"""
if parser is None:
parser = ArgumentParser()
data = parser.add_argument_group('Data')
engine = parser.add_argument_group('Engine Arguments')
factorize = parser.add_argument_group('Factorizer Arguments')
matrix_factorize = parser.add_argument_group('MF Arguments')
regularize = parser.add_argument_group('Regularizer Arguments')
log = parser.add_argument_group('Tensorboard Arguments')
engine.add_argument('--alias', default='experiment',
help='Name for the experiment')
engine.add_argument('--seed', default='42')
data.add_argument('--data-type', default='ml1m', help='type of the dataset')
data.add_argument('--data-path', default='./data/{data_type}/')
data.add_argument('--train_test-freq-bd', help='split the data freq-wise, bound of the user freq')
data.add_argument('--train-valid-freq-bd', help='split the data freq-wise, bound of the user freq')
data.add_argument('--batch-size-train', default=1)
data.add_argument('--batch-size-valid', default=1)
data.add_argument('--batch-size-test', default=1)
data.add_argument('--device-ids-test', default=[0], help='devices used for multi-processing evaluate')
regularize.add_argument('--max-steps', default=1e8)
regularize.add_argument('--use-cuda', default=True)
regularize.add_argument('--device-id', default=0, help='Training Devices')
factorize.add_argument('--factorizer', default='fm', help='Type of the Factorization Model')
factorize.add_argument('--latent-dim', default=8)
type_opt = 'fm'
matrix_factorize.add_argument('--{}-optimizer'.format(type_opt), default='sgd')
matrix_factorize.add_argument('--{}-lr'.format(type_opt), default=1e-3)
matrix_factorize.add_argument('--{}-grad-clip'.format(type_opt), default=1)
log.add_argument('--log-interval', default=1)
log.add_argument('--tensorboard', default='./tmp/runs')
log.add_argument('--early_stop', default=None)
log.add_argument('--display_interval', default=100)
return parser
class Engine(object):
"""Engine wrapping the training & evaluation
of adpative regularized maxtirx factorization
"""
def __init__(self, opt):
self._opt = opt
self._opt['data_path'] = self._opt['data_path'].format(data_type=self._opt['data_type'])
self._sampler = setup_generator(opt)
self._opt['field_dims'] = self._sampler.field_dims
self._opt['emb_save_path'] = self._opt['emb_save_path'].format(
factorizer=self._opt['factorizer'],
data_type=self._opt['data_type'],
alias=self._opt['alias'],
num_parameter='{num_parameter}'
)
if 'retrain_emb_param' in opt:
self.retrain = True
if opt['re_init']:
self._opt['alias'] += '_reinitTrue'
else:
self._opt['alias'] += '_reinitFalse'
self._opt['alias'] += '_retrain_emb_param{}'.format(opt['retrain_emb_param'])
else:
self.retrain = False
self.candidate_p = self._opt.get('candidate_p')
self._opt['eval_res_path'] = self._opt['eval_res_path'].format(
factorizer=self._opt['factorizer'],
data_type=self._opt['data_type'],
alias=self._opt['alias'],
epoch_idx='{epoch_idx}'
)
self._factorizer = setup_factorizer(opt)
self._opt['tensorboard'] = self._opt['tensorboard'].format(
factorizer=self._opt['factorizer'],
data_type=self._opt['data_type'],
)
self._writer = SummaryWriter(log_dir='{}/{}'.format(self._opt['tensorboard'], opt['alias']))
self._writer.add_text('option', str(opt), 0)
self._mode = None
self.early_stop = self._opt.get('early_stop')
@property
def mode(self):
return self._mode
@mode.setter
def mode(self, new_mode):
assert new_mode in ['complete', 'partial', None] # training a complete trajectory or a partial trajctory
self._mode = new_mode
def save_pruned_embedding(self, param, step_idx):
max_candidate_p = max(self.candidate_p)
if max_candidate_p == 0:
print("Minimal target parameters achieved, stop pruning.")
exit(0)
else:
if param <= max_candidate_p:
embedding = self._factorizer.model.get_embedding()
emb_save_path = self._opt['emb_save_path'].format(num_parameter=param)
emb_save_dir, _ = os.path.split(emb_save_path)
if not os.path.exists(emb_save_dir):
os.makedirs(emb_save_dir)
np.save(emb_save_path, embedding)
max_idx = self.candidate_p.index(max(self.candidate_p))
self.candidate_p[max_idx] = 0
print("*" * 80)
print("Reach the target parameter: {}, save embedding with size: {}".format(max_candidate_p, param))
print("*" * 80)
elif step_idx == 0:
embedding = self._factorizer.model.get_embedding()
emb_save_path = self._opt['emb_save_path'].format(num_parameter='initial_embedding')
emb_save_dir, _ = os.path.split(emb_save_path)
if not os.path.exists(emb_save_dir):
os.makedirs(emb_save_dir)
np.save(emb_save_path, embedding)
print("*" * 80)
print("Save the initial embedding table")
print("*" * 80)
def train_an_episode(self, max_steps, episode_idx=''):
"""Train a feature_based recommendation model"""
assert self.mode in ['partial', 'complete']
print('-' * 80)
print('[{} episode {} starts!]'.format(self.mode, episode_idx))
print('Initializing ...')
self._factorizer.init_episode()
log_interval = self._opt.get('log_interval')
eval_interval = self._opt.get('eval_interval')
display_interval = self._opt.get('display_interval')
status = dict()
flag, test_flag, valid_flag = 0, 0, 0
valid_mf_loss, train_mf_loss = np.inf, np.inf
best_valid_result = {"AUC": [0, 0], "LogLoss": [np.inf, 0]}
best_test_result = {"AUC": [0, 0], "LogLoss": [np.inf, 0]}
epoch_start = datetime.now()
for step_idx in range(int(max_steps)):
# Prepare status for current step
status['done'] = False
status['sampler'] = self._sampler
train_mf_loss = self._factorizer.update(self._sampler)
status['train_mf_loss'] = train_mf_loss
# Logging & Evaluate on the Evaluate Set
if self.mode == 'complete' and step_idx % log_interval == 0:
epoch_idx = int(step_idx / self._sampler.num_batches_train)
sparsity, params = self._factorizer.model.calc_sparsity()
if not self.retrain:
self.save_pruned_embedding(params, step_idx)
self._writer.add_scalar('train/step_wise/mf_loss', train_mf_loss, step_idx)
self._writer.add_scalar('train/step_wise/sparsity', sparsity, step_idx)
if step_idx % display_interval == 0:
print('[Epoch {}|Step {}|Flag {}|Sparsity {:.4f}|Params {}]'.format(epoch_idx,
step_idx % self._sampler.num_batches_train,
flag, sparsity, params))
if step_idx % self._sampler.num_batches_train == 0:
threshold = self._factorizer.model.get_threshold()
self._writer.add_histogram('threshold/epoch_wise/threshold', threshold, epoch_idx)
self._writer.add_scalar('train/epoch_wise/sparsity', sparsity, epoch_idx)
self._writer.add_scalar('train/epoch_wise/params', params, epoch_idx)
if (step_idx % self._sampler.num_batches_train == 0) and (epoch_idx % eval_interval == 0) and self.retrain:
print('Evaluate on test ...')
start = datetime.now()
eval_res_path = self._opt['eval_res_path'].format(epoch_idx=epoch_idx)
eval_res_dir, _ = os.path.split(eval_res_path)
if not os.path.exists(eval_res_dir):
os.makedirs(eval_res_dir)
use_cuda = self._opt['use_cuda']
logloss, auc = evaluate_fm(self._factorizer, self._sampler, use_cuda)
self._writer.add_scalar('test/epoch_wise/metron_auc', auc, epoch_idx)
self._writer.add_scalar('test/epoch_wise/metron_logloss', logloss, epoch_idx)
if logloss < best_test_result['LogLoss'][0]:
best_test_result['LogLoss'][0] = logloss
best_test_result['LogLoss'][1] = epoch_idx
if auc > best_test_result['AUC'][0]:
best_test_result['AUC'][0] = auc
best_test_result['AUC'][1] = epoch_idx
test_flag = 0
else:
test_flag += 1
pd.Series(best_test_result).to_csv(eval_res_path)
print("*" * 80)
print("Test AUC: {:4f} | Logloss: {:4f}".format(auc, logloss))
end = datetime.now()
print('Evaluate Time {} minutes'.format((end - start).total_seconds() / 60))
epoch_end = datetime.now()
dur = (epoch_end - epoch_start).total_seconds() / 60
epoch_start = datetime.now()
print('[Epoch {:4d}] train MF loss: {:04.8f}, '
'valid loss: {:04.8f}, time {:04.8f} minutes'.format(epoch_idx,
train_mf_loss,
valid_mf_loss,
dur))
print("*"*80)
flag = test_flag
if self.early_stop is not None and flag >= self.early_stop:
print("Early stop training process")
print("Best performance on test data: ", best_test_result)
print("Best performance on valid data: ", best_valid_result)
self._writer.add_text('best_valid_result', str(best_valid_result), 0)
self._writer.add_text('best_test_result', str(best_test_result), 0)
exit()
def train(self):
self.mode = 'complete'
self.train_an_episode(self._opt['max_steps'])
if __name__ == '__main__':
opt = setup_args()
engine = Engine(opt)
engine.train()