-
Notifications
You must be signed in to change notification settings - Fork 5
/
spm_Ce.m
59 lines (53 loc) · 1.56 KB
/
spm_Ce.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
function [C] = spm_Ce(v,a)
% return error covariance constraints (for serially correlated data)
% FORMAT [C] = spm_Ce(v,a)
% v - (1 x l) v(i) = number of observations for i-th block
% a - AR coefficient expansion point (default a = [])
%
% a = [] (default) - block diagonal identity matrices specified by v:
%
% C{i} = blkdiag( zeros(v(1),v(1)),...,AR(0),...,zeros(v(end),v(end)))
% AR(0) = eye(v(i),v(i))
%
% otherwise:
%
% C{i} = AR(a) - a*dAR(a)/da;
% C{i + 1} = AR(a) + a*dAR(a)/da;
%
% See also: spm_Q.m
%__________________________________________________________________________
% Copyright (C) 2008 Wellcome Trust Centre for Neuroimaging
% Karl Friston
% $Id: spm_Ce.m 3527 2009-11-02 20:27:13Z karl $
% defaults
%--------------------------------------------------------------------------
if nargin == 1, a = []; end
% create block diagonal components
%--------------------------------------------------------------------------
C = {};
l = length(v);
n = sum(v);
k = 0;
if l > 1
for i = 1:l
dCda = spm_Ce(v(i),a);
for j = 1:length(dCda)
[x y q] = find(dCda{j});
x = x + k;
y = y + k;
C{end + 1} = sparse(x,y,q,n,n);
end
k = v(i) + k;
end
else
% dCda
%----------------------------------------------------------------------
if ~isempty(a)
Q = spm_Q(a,v);
dQda = spm_diff('spm_Q',a,v,1);
C{1} = Q - dQda{1}*a;
C{2} = Q + dQda{1}*a;
else
C{1} = speye(v,v);
end
end