-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Vetri Velan
committed
Sep 23, 2024
1 parent
3b95726
commit c9865ac
Showing
6 changed files
with
103 additions
and
0 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
import numpy as np | ||
import matplotlib as mpl | ||
import matplotlib.pyplot as plt | ||
import math | ||
import sys | ||
from scipy.optimize import minimize | ||
mpl.rcParams.update({'font.size': 20}) | ||
mpl.rcParams.update({'axes.linewidth': 2}) | ||
|
||
|
||
|
||
# Define the model: falling power law | ||
def power_law_basic(x, A, alpha): | ||
return A * x**(-alpha) | ||
|
||
def power_law(x, A, alpha, x0, k): | ||
return A * x**(-alpha) / (1 + np.exp(-(x - x0)*k)) | ||
|
||
# Define the model: falling exponential | ||
def exponential_basic(x, A, alpha): | ||
return A * np.exp(-x * alpha) | ||
|
||
def exponential(x, A, alpha, x0, k): | ||
return A * np.exp(-x * alpha) / (1 + np.exp(-(x - x0)*k)) | ||
|
||
# Negative log likelihood function to minimize | ||
def negative_log_likelihood_power(params, x, counts): | ||
A, alpha, x0, k = params | ||
y = power_law(x, A*1e4, alpha, x0, k) | ||
nll = np.sum(y - counts * np.log(y)) | ||
return nll | ||
|
||
# Negative log likelihood function to minimize | ||
def negative_log_likelihood_exp(params, x, counts): | ||
A, alpha, x0, k = params | ||
y = exponential(x, A*1e4, alpha, x0, k) | ||
nll = np.sum(y - counts * np.log(y)) | ||
return nll | ||
|
||
|
||
|
||
energies_eV = np.load('spectra/BigFins_shared_0719.npy') | ||
|
||
mass_kg = (1 * 1 * 0.1) * 2.329 * 1e-3 | ||
time_days = 3 / 24. | ||
|
||
print(f'{len(energies_eV)} events') | ||
print(f'{mass_kg * 1000:.4f} grams of Si') | ||
|
||
bins_eV_full = np.arange(1, 6, 0.03) | ||
fit_low = 1.3 #1.9 | ||
fit_high = 4 | ||
bins_eV_fit = bins_eV_full[(bins_eV_full > fit_low) * (bins_eV_full < fit_high)] | ||
|
||
event_weights_DRU = np.full(len(energies_eV), (1/mass_kg/time_days/np.diff(bins_eV_fit*1e-3)[0])) | ||
|
||
dRdE_DRU_arr, E_eV_arr = np.histogram(energies_eV, bins_eV_fit) | ||
E_eV_arr = 0.5 * (E_eV_arr[1:] + E_eV_arr[:-1]) | ||
|
||
# Perform the optimization to minimize the negative log likelihood | ||
result = minimize(negative_log_likelihood_power, [4, 5, 1.5, 1], args=(E_eV_arr, dRdE_DRU_arr), method='L-BFGS-B', bounds=[(1e-10, None), (1e-10, None), (1, 2), (1e-10, None)]) | ||
A_fit_power, alpha_fit_power, Eth_power, inv_slope_power = result.x | ||
A_fit_power *= event_weights_DRU[0] * 1e4 | ||
print(f"Power law parameters: A = {A_fit_power:.3e} DRU, exponent = -{alpha_fit_power:.4f}") | ||
print(result.x) | ||
|
||
# Perform the optimization to minimize the negative log likelihood | ||
result = minimize(negative_log_likelihood_exp, [4, 2., 1.5, 1.], args=(E_eV_arr, dRdE_DRU_arr), method='L-BFGS-B', bounds=[(1e-10, None), (1e-10, None), (1, 2), (1e-10, None)]) | ||
A_fit_exp, inv_E0_exp, Eth_exp, inv_slope_exp = result.x | ||
A_fit_exp *= event_weights_DRU[0] * 1e4 | ||
print(f"Exponential parameters: A = {A_fit_exp:.3e} DRU, E0 = {1 / inv_E0_exp:.4f} eV") | ||
print(result.x) | ||
|
||
####### Plotting ####### | ||
|
||
fig, ax = plt.subplots(2, 1, figsize=(15, 12)) | ||
|
||
for i in range(2): | ||
ax[i].hist(energies_eV, bins_eV_full, weights=event_weights_DRU, alpha=0.4, color='b') | ||
ax[i].set_yscale('log') | ||
ymin, ymax = ax[i].get_ylim() | ||
|
||
if i == 0: | ||
#ax[i].plot(bins_eV_full, exponential(bins_eV_full, A_fit_exp, inv_E0_exp), 'r-') | ||
ax[i].plot(bins_eV_full, exponential(bins_eV_full, A_fit_exp, inv_E0_exp, Eth_exp, inv_slope_exp), 'r-') | ||
ax[i].text(0.98, 0.95, f'dRdE [DRU] = \n{A_fit_exp:.3e} * e^[-E / ({1/inv_E0_exp:.4f} eV)]', ha='right', va='top', fontsize=16, color='r', transform=ax[i].transAxes) | ||
else: | ||
ax[i].plot(bins_eV_full, power_law(bins_eV_full, A_fit_power, alpha_fit_power, Eth_power, inv_slope_power), 'r-') | ||
ax[i].text(0.98, 0.95, f'dRdE [DRU] = \n{A_fit_power:.3e} * [E (eV)]^-({alpha_fit_power:.4f})', ha='right', va='top', fontsize=16, color='r', transform=ax[i].transAxes) | ||
pass | ||
|
||
ax[i].set_xlabel('Energy [eV]') | ||
ax[i].set_ylabel('Event Rate [DRU]') | ||
|
||
ax[i].plot([fit_low, fit_low], [ymin, ymax], 'k--', lw=2) | ||
ax[i].plot([fit_high, fit_high], [ymin, ymax], 'k--', lw=2) | ||
ax[i].set_ylim([ymin, ymax]) | ||
|
||
|
||
ax[1].set_xscale('log') | ||
|
||
fig.tight_layout() | ||
fig.savefig('Si_background_spectra.png') |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.