-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain_supervised.py
152 lines (114 loc) · 5.91 KB
/
pretrain_supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import argparse
from loader import MoleculeDataset
from torch_geometric.data import DataLoader
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import numpy as np
from model import GNN, GNN_graphpred
from sklearn.metrics import roc_auc_score
from splitters import scaffold_split, random_split, random_scaffold_split
import pandas as pd
from tensorboardX import SummaryWriter
criterion = nn.BCEWithLogitsLoss(reduction = "none")
def train(args, model, device, loader, optimizer):
model.train()
for step, batch in enumerate(tqdm(loader, desc="Iteration")):
batch = batch.to(device)
pred = model(batch.x, batch.edge_index, batch.edge_attr, batch.batch)
y = batch.y.view(pred.shape).to(torch.float64)
#Whether y is non-null or not.
is_valid = y**2 > 0
#Loss matrix
loss_mat = criterion(pred.double(), (y+1)/2)
#loss matrix after removing null target
loss_mat = torch.where(is_valid, loss_mat, torch.zeros(loss_mat.shape).to(loss_mat.device).to(loss_mat.dtype))
optimizer.zero_grad()
loss = torch.sum(loss_mat)/torch.sum(is_valid)
loss.backward()
optimizer.step()
def eval(args, model, device, loader, normalized_weight):
model.eval()
y_true = []
y_scores = []
for step, batch in enumerate(tqdm(loader, desc="Iteration")):
batch = batch.to(device)
with torch.no_grad():
pred = model(batch.x, batch.edge_index, batch.edge_attr, batch.batch)
y_true.append(batch.y.view(pred.shape).cpu())
y_scores.append(pred.cpu())
y_true = torch.cat(y_true, dim = 0).numpy()
y_scores = torch.cat(y_scores, dim = 0).numpy()
roc_list = []
weight = []
for i in range(y_true.shape[1]):
#AUC is only defined when there is at least one positive data.
if np.sum(y_true[:,i] == 1) > 0 and np.sum(y_true[:,i] == -1) > 0:
is_valid = y_true[:,i]**2 > 0
roc_list.append(roc_auc_score((y_true[is_valid,i] + 1)/2, y_scores[is_valid,i]))
weight.append(normalized_weight[i])
if len(roc_list) < y_true.shape[1]:
print("Some target is missing!")
print("Missing ratio: %f" %(1 - float(len(roc_list))/y_true.shape[1]))
weight = np.array(weight)
roc_list = np.array(roc_list)
return weight.dot(roc_list)
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch implementation of pre-training of graph neural networks')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--batch_size', type=int, default=32,
help='input batch size for training (default: 32)')
parser.add_argument('--epochs', type=int, default=100,
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate (default: 0.001)')
parser.add_argument('--decay', type=float, default=0,
help='weight decay (default: 0)')
parser.add_argument('--num_layer', type=int, default=5,
help='number of GNN message passing layers (default: 5).')
parser.add_argument('--emb_dim', type=int, default=300,
help='embedding dimensions (default: 300)')
parser.add_argument('--dropout_ratio', type=float, default=0.2,
help='dropout ratio (default: 0.2)')
parser.add_argument('--graph_pooling', type=str, default="mean",
help='graph level pooling (sum, mean, max, set2set, attention)')
parser.add_argument('--JK', type=str, default="last",
help='how the node features across layers are combined. last, sum, max or concat')
parser.add_argument('--dataset', type=str, default = 'chembl_filtered', help='root directory of dataset. For now, only classification.')
parser.add_argument('--gnn_type', type=str, default="gin")
parser.add_argument('--input_model_file', type=str, default = '', help='filename to read the model (if there is any)')
parser.add_argument('--output_model_file', type = str, default = '', help='filename to output the pre-trained model')
parser.add_argument('--num_workers', type=int, default = 8, help='number of workers for dataset loading')
args = parser.parse_args()
torch.manual_seed(0)
np.random.seed(0)
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu")
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
#Bunch of classification tasks
if args.dataset == "chembl_filtered":
num_tasks = 1310
else:
raise ValueError("Invalid dataset name.")
#set up dataset
dataset = MoleculeDataset("dataset/" + args.dataset, dataset=args.dataset)
loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers = args.num_workers)
#set up model
model = GNN_graphpred(args.num_layer, args.emb_dim, num_tasks, JK = args.JK, drop_ratio = args.dropout_ratio, graph_pooling = args.graph_pooling, gnn_type = args.gnn_type)
if not args.input_model_file == "":
model.from_pretrained(args.input_model_file + ".pth")
model.to(device)
#set up optimizer
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.decay)
print(optimizer)
for epoch in range(1, args.epochs+1):
print("====epoch " + str(epoch))
train(args, model, device, loader, optimizer)
if not args.output_model_file == "":
torch.save(model.gnn.state_dict(), args.output_model_file + ".pth")
if __name__ == "__main__":
main()