-
Notifications
You must be signed in to change notification settings - Fork 0
/
pretrain_edgepred.py
112 lines (83 loc) · 4.54 KB
/
pretrain_edgepred.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import argparse
from loader import MoleculeDataset
from dataloader import DataLoaderAE
from util import NegativeEdge
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from tqdm import tqdm
import numpy as np
from model import GNN, GNN_graphpred
from sklearn.metrics import roc_auc_score
from splitters import scaffold_split, random_split, random_scaffold_split
import pandas as pd
from tensorboardX import SummaryWriter
criterion = nn.BCEWithLogitsLoss()
def train(args, model, device, loader, optimizer):
model.train()
train_acc_accum = 0
train_loss_accum = 0
for step, batch in enumerate(tqdm(loader, desc="Iteration")):
batch = batch.to(device)
node_emb = model(batch.x, batch.edge_index, batch.edge_attr)
positive_score = torch.sum(node_emb[batch.edge_index[0, ::2]] * node_emb[batch.edge_index[1, ::2]], dim = 1)
negative_score = torch.sum(node_emb[batch.negative_edge_index[0]] * node_emb[batch.negative_edge_index[1]], dim = 1)
optimizer.zero_grad()
loss = criterion(positive_score, torch.ones_like(positive_score)) + criterion(negative_score, torch.zeros_like(negative_score))
loss.backward()
optimizer.step()
train_loss_accum += float(loss.detach().cpu().item())
acc = (torch.sum(positive_score > 0) + torch.sum(negative_score < 0)).to(torch.float32)/float(2*len(positive_score))
train_acc_accum += float(acc.detach().cpu().item())
return train_acc_accum/step, train_loss_accum/step
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch implementation of pre-training of graph neural networks')
parser.add_argument('--device', type=int, default=0,
help='which gpu to use if any (default: 0)')
parser.add_argument('--batch_size', type=int, default=256,
help='input batch size for training (default: 256)')
parser.add_argument('--epochs', type=int, default=100,
help='number of epochs to train (default: 100)')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate (default: 0.001)')
parser.add_argument('--decay', type=float, default=0,
help='weight decay (default: 0)')
parser.add_argument('--num_layer', type=int, default=5,
help='number of GNN message passing layers (default: 5).')
parser.add_argument('--emb_dim', type=int, default=300,
help='embedding dimensions (default: 300)')
parser.add_argument('--dropout_ratio', type=float, default=0,
help='dropout ratio (default: 0)')
parser.add_argument('--JK', type=str, default="last",
help='how the node features across layers are combined. last, sum, max or concat')
parser.add_argument('--dataset', type=str, default = 'zinc_standard_agent', help='root directory of dataset. For now, only classification.')
parser.add_argument('--output_model_file', type = str, default = '', help='filename to output the pre-trained model')
parser.add_argument('--gnn_type', type=str, default="gin")
parser.add_argument('--num_workers', type=int, default = 8, help='number of workers for dataset loading')
args = parser.parse_args()
torch.manual_seed(0)
np.random.seed(0)
device = torch.device("cuda:" + str(args.device)) if torch.cuda.is_available() else torch.device("cpu")
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
#set up dataset
dataset = MoleculeDataset("dataset/" + args.dataset, dataset=args.dataset, transform = NegativeEdge())
print(dataset[0])
loader = DataLoaderAE(dataset, batch_size=args.batch_size, shuffle=True, num_workers = args.num_workers)
#set up model
model = GNN(args.num_layer, args.emb_dim, JK = args.JK, drop_ratio = args.dropout_ratio, gnn_type = args.gnn_type)
model.to(device)
#set up optimizer
optimizer = optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.decay)
print(optimizer)
for epoch in range(1, args.epochs+1):
print("====epoch " + str(epoch))
train_acc, train_loss = train(args, model, device, loader, optimizer)
print(train_acc)
print(train_loss)
if not args.output_model_file == "":
torch.save(model.state_dict(), args.output_model_file + ".pth")
if __name__ == "__main__":
main()