-
Notifications
You must be signed in to change notification settings - Fork 21
/
pipeline.py
executable file
·217 lines (180 loc) · 7.92 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import argparse
import time
from transformers import AutoTokenizer
class Qwen():
def __init__(self, args):
# preprocess parameters, such as prompt & tokenizer
# devid
self.devices = [int(d) for d in args.devid.split(",")]
# load tokenizer
print("Load " + args.tokenizer_path + " ...")
self.tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_path, trust_remote_code=True
)
# warm up
self.tokenizer.decode([0])
self.system_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n"
self.prompt = (
"<|im_start|>user\n{}<|im_end|>\n"
"<|im_start|>assistant\n"
)
self.EOS = self.tokenizer.im_end_id # tokenizer.encode("<|im_end|>")
self.history = [self.system_prompt]
self.enable_history = args.enable_history
# load model
self.load_model(args)
def load_model(self, args):
import chat
self.model = chat.Qwen()
self.model.init(self.devices, args.model_path)
self.model.temperature = args.temperature
self.model.top_p = args.top_p
self.model.repeat_penalty = args.repeat_penalty
self.model.repeat_last_n = args.repeat_last_n
self.model.max_new_tokens = args.max_new_tokens
self.model.generation_mode = args.generation_mode
self.model.prompt_mode = args.prompt_mode
# self.model.prompt_length = args.prompt_length
self.SEQLEN = self.model.SEQLEN
def clear(self):
self.history = [self.system_prompt]
def update_history(self):
if self.model.token_length >= self.SEQLEN:
print("... (reach the maximal length)", flush=True, end='')
self.history = [self.system_prompt]
else:
self.history[-1] = self.history[-1] + self.answer_cur
def encode_tokens(self):
self.history.append(self.prompt.format(self.input_str))
text = "".join(self.history)
tokens = self.tokenizer(text).input_ids
return tokens
def chat(self):
"""
Start a chat session.
"""
# Instruct
print(
"""\n=================================================================
1. If you want to quit, please enter one of [q, quit, exit]
2. To create a new chat session, please enter one of [clear, new]
================================================================="""
)
# Stop Chatting with "exit" input
while True:
self.input_str = input("\nQuestion: ")
# Quit
if self.input_str in ["exit", "q", "quit"]:
break
# New Chat
elif self.input_str in ["clear", "new"]:
self.clear()
# Chat
else:
tokens = self.encode_tokens()
# check tokens
if not tokens:
print("Sorry: your question is empty!!")
return
if len(tokens) > self.SEQLEN:
print(
"The maximum question length should be shorter than {} but we get {} instead.".format(
self.SEQLEN, len(tokens)
)
)
return
print("\nAnswer: ", end="")
self.stream_answer(tokens)
def stream_answer(self, tokens, prompt_cache):
"""
Stream the answer for the given tokens.
"""
tok_num = 0
self.answer_cur = ""
self.answer_token = []
# First token
first_start = time.time()
if not prompt_cache:
token = self.model.forward_first(tokens)
else:
token = self.model.forward_prompt_first(tokens)
first_end = time.time()
# Following tokens
while token != self.EOS and self.model.token_length < self.SEQLEN:
word = self.tokenizer.decode(token, skip_special_tokens=True)
self.answer_token += [token]
print(word, flush=True, end="")
tok_num += 1
token = self.model.forward_next()
self.answer_cur = self.tokenizer.decode(self.answer_token)
# counting time
next_end = time.time()
first_duration = first_end - first_start
next_duration = next_end - first_end
tps = tok_num / next_duration
if self.enable_history:
self.update_history()
else:
self.clear()
print()
print(f"FTL: {first_duration:.3f} s")
print(f"TPS: {tps:.3f} token/s")
## For Web Demo
def stream_predict(self, query):
"""
Stream the prediction for the given query.
"""
self.answer_cur = ""
self.input_str = query
tokens = self.encode_tokens()
for answer_cur, history in self._generate_predictions(tokens):
yield answer_cur, history
def _generate_predictions(self, tokens):
"""
Generate predictions for the given tokens.
"""
# First token
next_token = self.model.forward_first(tokens)
output_tokens = [next_token]
# Following tokens
while True:
next_token = self.model.forward_next()
if next_token == self.EOS:
break
output_tokens += [next_token]
self.answer_cur = self.tokenizer.decode(output_tokens)
if self.model.token_length >= self.SEQLEN:
self.update_history()
yield self.answer_cur + "\n\n\nReached the maximum length; The history context has been cleared.", self.history
break
else:
yield self.answer_cur, self.history
self.update_history()
def test_prompt_cache(self):
content_str = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n"
question_str = "can you help me<|im_end|>\n<|im_start|>assistant\n"
content_tokens = self.tokenizer.encode(content_str)
question_tokens = self.tokenizer.encode(question_str)
self.model.prompt_length = len(content_tokens)
self.model.prompt_tokens = content_tokens
self.stream_answer(content_tokens + question_tokens, prompt_cache=False)
self.stream_answer(question_tokens, prompt_cache=True)
def main(args):
model = Qwen(args)
model.test_prompt_cache()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model_path', type=str, required=True, help='path to the bmodel file')
parser.add_argument('-t', '--tokenizer_path', type=str, default="../support/token_config", help='path to the tokenizer file')
parser.add_argument('-d', '--devid', type=str, default='0', help='device ID to use')
parser.add_argument('--temperature', type=float, default=1.0, help='temperature scaling factor for the likelihood distribution')
parser.add_argument('--top_p', type=float, default=1.0, help='cumulative probability of token words to consider as a set of candidates')
parser.add_argument('--repeat_penalty', type=float, default=1.0, help='penalty for repeated tokens')
parser.add_argument('--repeat_last_n', type=int, default=32, help='repeat penalty for recent n tokens')
parser.add_argument('--max_new_tokens', type=int, default=1024, help='max new token length to generate')
parser.add_argument('--generation_mode', type=str, choices=["greedy", "penalty_sample"], default="greedy", help='mode for generating next token')
parser.add_argument('--prompt_mode', type=str, choices=["prompted", "unprompted"], default="prompted", help='use prompt format or original input')
parser.add_argument('--enable_history', action='store_true', help="if set, enables storing of history memory")
# parser.add_argument('--prompt_length', type=int, default=1024, help="prompt length to reuse fixed prompt tokens")
args = parser.parse_args()
main(args)