-
Notifications
You must be signed in to change notification settings - Fork 0
/
nyc_temp.py
132 lines (108 loc) · 3.74 KB
/
nyc_temp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Import
import tensorflow as tf
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
import matplotlib.pyplot as plt
# Import data
data = pd.read_csv('nyc5.csv')
# Dimensions of dataset
n = data.shape[0]
p = data.shape[1]
# Make data a np.array
data = data.values
# Training and test data
train_start = 0
train_end = int(np.floor(0.8*n))
test_start = train_end + 1
test_end = n
data_train = data[np.arange(train_start, train_end), :]
data_test = data[np.arange(test_start, test_end), :]
# Scale data
scaler = MinMaxScaler(feature_range=(-1, 1))
scaler.fit(data_train)
data_train = scaler.transform(data_train)
data_test = scaler.transform(data_test)
# Build X and y
X_train = data_train[:, 1:]
y_train = data_train[:, 0]
X_test = data_test[:, 1:]
y_test = data_test[:, 0]
# Number of days in training data
n_days = X_train.shape[1]
# Neurons
n_neurons_1 = 1024
n_neurons_2 = 512
n_neurons_3 = 256
n_neurons_4 = 128
# Session
net = tf.InteractiveSession()
# Placeholder
X = tf.placeholder(dtype=tf.float32, shape=[None, n_days])
Y = tf.placeholder(dtype=tf.float32, shape=[None])
# Initializers
sigma = 1
weight_initializer = tf.variance_scaling_initializer(mode="fan_avg", distribution="uniform", scale=sigma)
bias_initializer = tf.zeros_initializer()
# Hidden weights
W_hidden_1 = tf.Variable(weight_initializer([n_days, n_neurons_1]))
bias_hidden_1 = tf.Variable(bias_initializer([n_neurons_1]))
W_hidden_2 = tf.Variable(weight_initializer([n_neurons_1, n_neurons_2]))
bias_hidden_2 = tf.Variable(bias_initializer([n_neurons_2]))
W_hidden_3 = tf.Variable(weight_initializer([n_neurons_2, n_neurons_3]))
bias_hidden_3 = tf.Variable(bias_initializer([n_neurons_3]))
W_hidden_4 = tf.Variable(weight_initializer([n_neurons_3, n_neurons_4]))
bias_hidden_4 = tf.Variable(bias_initializer([n_neurons_4]))
# Output weights
W_out = tf.Variable(weight_initializer([n_neurons_4, 1]))
bias_out = tf.Variable(bias_initializer([1]))
# Hidden layer
hidden_1 = tf.nn.relu(tf.add(tf.matmul(X, W_hidden_1), bias_hidden_1))
hidden_2 = tf.nn.relu(tf.add(tf.matmul(hidden_1, W_hidden_2), bias_hidden_2))
hidden_3 = tf.nn.relu(tf.add(tf.matmul(hidden_2, W_hidden_3), bias_hidden_3))
hidden_4 = tf.nn.relu(tf.add(tf.matmul(hidden_3, W_hidden_4), bias_hidden_4))
# Output layer (transpose!)
out = tf.transpose(tf.add(tf.matmul(hidden_4, W_out), bias_out))
# Cost function
mse = tf.reduce_mean(tf.squared_difference(out, Y))
# Optimizer
opt = tf.train.AdamOptimizer().minimize(mse)
# Init
net.run(tf.global_variables_initializer())
# Setup plot
plt.ion()
fig = plt.figure()
ax1 = fig.add_subplot(111)
line1, = ax1.plot(y_test)
line2, = ax1.plot(y_test * 0.5)
plt.show()
# Fit neural net
batch_size = 256
mse_train = []
mse_test = []
# Run
epochs = 10
for e in range(epochs):
# Shuffle training data
shuffle_indices = np.random.permutation(np.arange(len(y_train)))
X_train = X_train[shuffle_indices]
y_train = y_train[shuffle_indices]
# Minibatch training
for i in range(0, len(y_train) // batch_size):
start = i * batch_size
batch_x = X_train[start:start + batch_size]
batch_y = y_train[start:start + batch_size]
# Run optimizer with batch
net.run(opt, feed_dict={X: batch_x, Y: batch_y})
# Show progress
if np.mod(i, 50) == 0:
# MSE train and test
mse_train.append(net.run(mse, feed_dict={X: X_train, Y: y_train}))
mse_test.append(net.run(mse, feed_dict={X: X_test, Y: y_test}))
print('MSE Train: ', mse_train[-1])
print('MSE Test: ', mse_test[-1])
# Prediction
pred = net.run(out, feed_dict={X: X_test})
line2.set_ydata(pred)
plt.title('Epoch ' + str(e) + ', Batch ' + str(i))
plt.pause(0.01)