forked from PaddlePaddle/Research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vis.py
232 lines (198 loc) · 7.54 KB
/
vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
# coding: utf8
# copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
# GPU memory garbage collection optimization flags
os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0"
import sys
import argparse
import pprint
import cv2
import numpy as np
import paddle.fluid as fluid
from PIL import Image as PILImage
from src.utils.config import cfg
from src.datasets.cityscapes import CityscapesSeg
from src.models.model_builder import build_model
from src.models.model_builder import ModelPhase
def parse_args():
parser = argparse.ArgumentParser(description='PaddeSeg visualization tools')
parser.add_argument(
'--cfg',
dest='cfg_file',
help='Config file for training (and optionally testing)',
default=None,
type=str)
parser.add_argument(
'--use_gpu', dest='use_gpu', help='Use gpu or cpu', action='store_true')
parser.add_argument(
'--vis_dir',
dest='vis_dir',
help='visual save dir',
type=str,
default='visual')
parser.add_argument(
'--local_test',
dest='local_test',
help='if in local test mode, only visualize 5 images for testing',
action='store_true')
parser.add_argument(
'opts',
help='See config.py for all options',
default=None,
nargs=argparse.REMAINDER)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
return parser.parse_args()
def makedirs(directory):
if not os.path.exists(directory):
os.makedirs(directory)
def get_color_map_list(num_classes):
""" Returns the color map for visualizing the segmentation mask,
which can support arbitrary number of classes.
Args:
num_classes: Number of classes
Returns:
The color map
"""
color_map = num_classes * [0, 0, 0]
for i in range(0, num_classes):
j = 0
lab = i
while lab:
color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
j += 1
lab >>= 3
return color_map
def to_png_fn(fn):
"""
Append png as filename postfix
"""
directory, filename = os.path.split(fn)
basename, ext = os.path.splitext(filename)
return basename + ".png"
def visualize(cfg,
vis_file_list=None,
use_gpu=False,
vis_dir="visual_predict",
ckpt_dir=None,
log_writer=None,
local_test=False,
**kwargs):
if vis_file_list is None:
vis_file_list = cfg.DATASET.TEST_FILE_LIST
dataset = SegDataset(
file_list=vis_file_list,
mode=ModelPhase.VISUAL,
data_dir=cfg.DATASET.DATA_DIR)
startup_prog = fluid.Program()
test_prog = fluid.Program()
pred, logit = build_model(test_prog, startup_prog, phase=ModelPhase.VISUAL)
# Clone forward graph
test_prog = test_prog.clone(for_test=True)
# Generator full colormap for maximum 256 classes
color_map = get_color_map_list(256)
# Get device environment
place = fluid.CUDAPlace(0) if use_gpu else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
ckpt_dir = cfg.TEST.TEST_MODEL if not ckpt_dir else ckpt_dir
fluid.io.load_params(exe, ckpt_dir, main_program=test_prog)
save_dir = os.path.join('visual', vis_dir)
makedirs(save_dir)
fetch_list = [pred.name]
test_reader = dataset.batch(dataset.generator, batch_size=1, is_test=True)
img_cnt = 0
for imgs, grts, img_names, valid_shapes, org_shapes in test_reader:
pred_shape = (imgs.shape[2], imgs.shape[3])
pred, = exe.run(
program=test_prog,
feed={'image': imgs},
fetch_list=fetch_list,
return_numpy=True)
num_imgs = pred.shape[0]
# TODO: use multi-thread to write images
for i in range(num_imgs):
# Add more comments
res_map = np.squeeze(pred[i, :, :, :]).astype(np.uint8)
img_name = img_names[i]
res_shape = (res_map.shape[0], res_map.shape[1])
if res_shape[0] != pred_shape[0] or res_shape[1] != pred_shape[1]:
res_map = cv2.resize(
res_map, pred_shape, interpolation=cv2.INTER_NEAREST)
valid_shape = (valid_shapes[i, 0], valid_shapes[i, 1])
res_map = res_map[0:valid_shape[0], 0:valid_shape[1]]
org_shape = (org_shapes[i, 0], org_shapes[i, 1])
res_map = cv2.resize(
res_map, (org_shape[1], org_shape[0]),
interpolation=cv2.INTER_NEAREST)
png_fn = to_png_fn(img_name)
# colorful segment result visualization
vis_fn = os.path.join(save_dir, png_fn)
dirname = os.path.dirname(vis_fn)
makedirs(dirname)
pred_mask = PILImage.fromarray(res_map.astype(np.uint8), mode='P')
pred_mask.putpalette(color_map)
pred_mask.save(vis_fn)
img_cnt += 1
print("#{} visualize image path: {}".format(img_cnt, vis_fn))
# Use VisualDL to visualize image
if log_writer is not None:
# Calulate epoch from ckpt_dir folder name
epoch = int(os.path.split(ckpt_dir)[-1])
print("VisualDL visualization epoch", epoch)
pred_mask_np = np.array(pred_mask.convert("RGB"))
log_writer.add_image(
"Predict/{}".format(img_name),
pred_mask_np,
epoch)
# Original image
# BGR->RGB
img = cv2.imread(
os.path.join(cfg.DATASET.DATA_DIR, img_name))[..., ::-1]
log_writer.add_image(
"Images/{}".format(img_name),
img,
epoch)
# add ground truth (label) images
grt = grts[i]
if grt is not None:
grt = grt[0:valid_shape[0], 0:valid_shape[1]]
grt_pil = PILImage.fromarray(grt.astype(np.uint8), mode='P')
grt_pil.putpalette(color_map)
grt_pil = grt_pil.resize((org_shape[1], org_shape[0]))
grt = np.array(grt_pil.convert("RGB"))
log_writer.add_image(
"Label/{}".format(img_name),
grt,
epoch)
# If in local_test mode, only visualize 5 images just for testing
# procedure
if local_test and img_cnt >= 5:
break
if __name__ == '__main__':
args = parse_args()
if args.cfg_file is not None:
cfg.update_from_file(args.cfg_file)
if args.opts:
cfg.update_from_list(args.opts)
cfg.check_and_infer()
print(pprint.pformat(cfg))
visualize(cfg, **args.__dict__)