forked from PaddlePaddle/Research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval.py
311 lines (276 loc) · 12.4 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
# GPU memory garbage collection optimization flags
os.environ['FLAGS_eager_delete_tensor_gb'] = "0.0"
import sys
import time
import argparse
import functools
import pprint
import cv2
import numpy as np
import paddle
import paddle.fluid as fluid
import math
from src.utils.config import cfg
from src.utils.timer import Timer, calculate_eta
from src.models.model_builder import build_model
from src.models.model_builder import ModelPhase
from src.datasets import build_dataset
from src.utils.metrics import ConfusionMatrix
def parse_args():
parser = argparse.ArgumentParser(description='SemsegPaddle')
parser.add_argument(
'--cfg',
dest='cfg_file',
help='Config file for training (and optionally testing)',
default=None,
type=str)
parser.add_argument(
'--use_gpu',
dest='use_gpu',
help='Use gpu or cpu',
action='store_true',
default=False)
parser.add_argument(
'--use_mpio',
dest='use_mpio',
help='Use multiprocess IO or not',
action='store_true',
default=False)
parser.add_argument(
'opts',
help='See utils/config.py for all options',
default=None,
nargs=argparse.REMAINDER)
parser.add_argument(
'--multi_scales',
dest='multi_scales',
help='Use multi_scales for eval',
action='store_true',
default=False)
parser.add_argument(
'--flip',
dest='flip',
help='flip the image or not',
action='store_true',
default=False)
if len(sys.argv) == 1:
parser.print_help()
sys.exit(1)
return parser.parse_args()
def evaluate(cfg, ckpt_dir=None, use_gpu=False, use_mpio=False, multi_scales=False, flip=False, **kwargs):
np.set_printoptions(precision=5, suppress=True)
num_classes = cfg.DATASET.NUM_CLASSES
base_size = cfg.TEST.BASE_SIZE
crop_size = cfg.TEST.CROP_SIZE
startup_prog = fluid.Program()
test_prog = fluid.Program()
dataset = build_dataset(cfg.DATASET.DATASET_NAME,
file_list=cfg.DATASET.VAL_FILE_LIST,
mode=ModelPhase.EVAL,
data_dir=cfg.DATASET.DATA_DIR)
def data_generator():
#TODO: check is batch reader compatitable with Windows
if use_mpio:
data_gen = dataset.multiprocess_generator(
num_processes=cfg.DATALOADER.NUM_WORKERS,
max_queue_size=cfg.DATALOADER.BUF_SIZE)
else:
data_gen = dataset.generator()
for b in data_gen:
yield b[0], b[1], b[2]
py_reader, avg_loss, out, grts, masks = build_model(
test_prog, startup_prog, phase=ModelPhase.EVAL)
py_reader.decorate_sample_generator(
data_generator, drop_last=False, batch_size=cfg.EVAL_BATCH_SIZE, places=fluid.cuda_places())
# Get device environment
places = fluid.cuda_places() if use_gpu else fluid.cpu_places()
place = places[0]
dev_count = len(places)
print("#Device count: {}".format(dev_count))
exe = fluid.Executor(place)
exe.run(startup_prog)
test_prog = test_prog.clone(for_test=True)
ckpt_dir = cfg.TEST.TEST_MODEL if not ckpt_dir else ckpt_dir
if ckpt_dir is not None:
filename= '{}_{}_{}_epoch_{}.pdparams'.format(str(cfg.MODEL.MODEL_NAME),
str(cfg.MODEL.BACKBONE), str(cfg.DATASET.DATASET_NAME), cfg.SOLVER.NUM_EPOCHS)
print("loading testing model file: {}/{}".format(ckpt_dir, filename))
fluid.io.load_params(exe, ckpt_dir, main_program=test_prog, filename=filename)
# Use streaming confusion matrix to calculate mean_iou
np.set_printoptions(
precision=4, suppress=True, linewidth=160, floatmode="fixed")
conf_mat = ConfusionMatrix(cfg.DATASET.NUM_CLASSES, streaming=True)
#fetch_list: return of the model
fetch_list = [avg_loss.name, out.name]
num_images = 0
step = 0
all_step = cfg.DATASET.VAL_TOTAL_IMAGES // cfg.EVAL_BATCH_SIZE
timer = Timer()
timer.start()
for data in py_reader():
mask = np.array(data[0]['mask'])
label = np.array(data[0]['label'])
image_org = np.array(data[0]['image'])
image = np.transpose(image_org, (0, 2, 3, 1)) # BCHW->BHWC
image = np.squeeze(image)
if cfg.TEST.SLIDE_WINDOW:
if not multi_scales:
scales = [1.0]
else:
scales = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0, 2.25] if cfg.DATASET.DATASET_NAME == 'cityscapes' else [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
#scales = [0.75, 1.0, 1.25] # fast multi-scale testing
#strides
stride = int(crop_size *1.0 / 3) # 1/3 > 2/3 > 1/2 for input_size: 769 x 769
h, w = image.shape[0:2]
scores = np.zeros(shape=[num_classes, h, w], dtype='float32')
for scale in scales:
long_size = int(math.ceil(base_size * scale))
if h > w:
height = long_size
width = int(1.0 * w * long_size / h + 0.5)
short_size = width
else:
width = long_size
height = int(1.0 * h * long_size / w + 0.5)
short_size = height
# print('org_img_size: {}x{}, rescale_img_size: {}x{}'.format(h, w, height, width))
cur_img = image_resize(image, height, width)
# pading
if long_size <= crop_size:
pad_img = pad_single_image(cur_img, crop_size)
label_feed, mask_feed = get_feed(pad_img)
pad_img = mapper_image(pad_img)
loss, pred1 = exe.run(
test_prog,
feed={'image':pad_img, 'label':label_feed, 'mask':mask_feed},
fetch_list = fetch_list,
return_numpy=True)
pred1 = np.array(pred1)
outputs = pred1[:, :, :height, :width]
if flip:
pad_img_flip = flip_left_right_image(cur_img)
pad_img_flip = pad_single_image(pad_img_flip, crop_size)
label_feed, mask_feed = get_feed(pad_img_flip)
pad_img_flip = mapper_image(pad_img_flip)
loss, pred1 = exe.run(
test_prog,
feed={'image':pad_img_flip, 'label':label_feed, 'mask':mask_feed},
fetch_list = fetch_list,
return_numpy=True)
pred1 = np.flip(pred1, 3)
outputs += pred1[:, :, :height, :width]
else:
if short_size < crop_size:
pad_img = pad_single_image(cur_img, crop_size)
else:
pad_img = cur_img
ph, pw = pad_img.shape[0:2]
#slid window
h_grids = int(math.ceil(1.0 * (ph - crop_size) / stride)) + 1
w_grids = int(math.ceil(1.0 * (pw - crop_size) / stride)) + 1
outputs = np.zeros(shape=[1, num_classes, ph, pw], dtype='float32')
count_norm = np.zeros(shape=[1, 1, ph, pw], dtype='int32')
for idh in range(h_grids):
for idw in range(w_grids):
h0 = idh * stride
w0 = idw * stride
h1 = min(h0 + crop_size, ph)
w1 = min(w0 + crop_size, pw)
#print('(h0,w0,h1,w1):({},{},{},{})'.format(h0, w0, h1, w1))
crop_img = crop_image(pad_img, h0, w0, h1, w1)
pad_crop_img = pad_single_image(crop_img, crop_size)
label_feed, mask_feed = get_feed(pad_crop_img)
pad_crop_img = mapper_image(pad_crop_img)
loss, pred1 = exe.run(
test_prog,
feed={'image':pad_crop_img, 'label':label_feed, 'mask':mask_feed},
fetch_list = fetch_list,
return_numpy=True)
pred1 = np.array(pred1)
outputs[:, :, h0:h1, w0:w1] += pred1[:, :, 0:h1-h0, 0:w1-w0]
count_norm[:, :, h0:h1, w0:w1] += 1
if flip:
pad_img_flip = flip_left_right_image(crop_img)
pad_img_flip = pad_single_image(pad_img_flip, crop_size)
label_feed, mask_feed = get_feed(pad_img_flip)
pad_img_flip = mapper_image(pad_img_flip)
loss, pred1 = exe.run(
test_prog,
feed={'image':pad_img_flip, 'label':label_feed, 'mask':mask_feed},
fetch_list = fetch_list,
return_numpy = True)
pred1 = np.flip(pred1, 3)
outputs[:, :, h0:h1, w0:w1] += pred1[:, :, 0:h1-h0, 0:w1-w0]
count_norm[:, :, h0:h1, w0:w1] += 1
outputs = 1.0 * outputs / count_norm
outputs = outputs[:, :, :height, :width]
with fluid.dygraph.guard():
outputs = fluid.dygraph.to_variable(outputs)
outputs = fluid.layers.resize_bilinear(outputs, out_shape=[h, w])
score = outputs.numpy()[0]
scores += score
else:
# taking the original image as the model input
loss, pred = exe.run(
test_prog,
feed={'image':image_org, 'label':label, 'mask':mask},
fetch_list = fetch_list,
return_numpy = True)
scores = pred[0]
# computing IoU with all scale result
pred = np.argmax(scores, axis=0).astype('int64')
pred = pred[np.newaxis, :, :, np.newaxis]
step += 1
num_images += pred.shape[0]
conf_mat.calculate(pred, label, mask)
_, iou = conf_mat.mean_iou()
_, acc = conf_mat.accuracy()
print("[EVAL] step={}/{} acc={:.4f} IoU={:.4f}".format(step, all_step, acc, iou))
category_iou, avg_iou = conf_mat.mean_iou()
category_acc, avg_acc = conf_mat.accuracy()
print("[EVAL] #image={} acc={:.4f} IoU={:.4f}".format(num_images, avg_acc, avg_iou))
print("[EVAL] Category IoU:", category_iou)
print("[EVAL] Category Acc:", category_acc)
print("[EVAL] Kappa:{:.4f}".format(conf_mat.kappa()))
print("flip = ", flip)
print("scales = ", scales)
return category_iou, avg_iou, category_acc, avg_acc
def image_resize(image, height, width):
if image.shape[0] == 3:
image = np.transpose(image, (1, 2, 0))
image = cv2.resize(image, (width, height), interpolation=cv2.INTER_LINEAR)
return image
def pad_single_image(image, crop_size):
h, w = image.shape[0:2]
pad_h = crop_size - h if h < crop_size else 0
pad_w = crop_size - w if w < crop_size else 0
image = cv2.copyMakeBorder(image, 0, pad_h, 0, pad_w, cv2.BORDER_CONSTANT,value=0)
return image
def mapper_image(image):
# HxWx3 -> 3xHxW -> 1x3xHxW
image_array = np.transpose(image, (2, 0, 1))
image_array = image_array.astype('float32')
image_array = image_array[np.newaxis, :]
return image_array
def flip_left_right_image(image):
return cv2.flip(image, 1)
def get_feed(image):
h, w = image.shape[0:2]
return np.zeros([1, 1, h, w], dtype='int32'), np.zeros([1, 1, h, w], dtype='int32')
def crop_image(image, h0, w0, h1, w1):
return image[h0:h1, w0:w1, :]
def main():
args = parse_args()
if args.cfg_file is not None:
cfg.update_from_file(args.cfg_file)
if args.opts:
cfg.update_from_list(args.opts)
cfg.check_and_infer()
print(pprint.pformat(cfg))
evaluate(cfg, **args.__dict__)
if __name__ == '__main__':
main()