forked from pulp-platform/axi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
axi_to_axi_lite.sv
322 lines (304 loc) · 11.8 KB
/
axi_to_axi_lite.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
// Copyright (c) 2014-2020 ETH Zurich, University of Bologna
//
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
//
// Authors: Fabian Schuiki <[email protected]>
// Andreas Kurth <[email protected]>
// Wolfgang Roenninger <[email protected]>
//
// Description: An AXI4+ATOP to AXI4-Lite adapter with atomic transaction and burst support.
module axi_to_axi_lite #(
parameter int unsigned AxiAddrWidth = 32'd0,
parameter int unsigned AxiDataWidth = 32'd0,
parameter int unsigned AxiIdWidth = 32'd0,
parameter int unsigned AxiUserWidth = 32'd0,
parameter int unsigned AxiMaxWriteTxns = 32'd0,
parameter int unsigned AxiMaxReadTxns = 32'd0,
parameter bit FallThrough = 1'b1, // FIFOs in Fall through mode in ID reflect
parameter type full_req_t = logic,
parameter type full_resp_t = logic,
parameter type lite_req_t = logic,
parameter type lite_resp_t = logic
) (
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
input logic test_i, // Testmode enable
// slave port full AXI4+ATOP
input full_req_t slv_req_i,
output full_resp_t slv_resp_o,
// master port AXI4-Lite
output lite_req_t mst_req_o,
input lite_resp_t mst_resp_i
);
// full bus declarations
full_req_t filtered_req, splitted_req;
full_resp_t filtered_resp, splitted_resp;
// atomics adapter so that atomics can be resolved
axi_atop_filter #(
.AxiIdWidth ( AxiIdWidth ),
.AxiMaxWriteTxns ( AxiMaxWriteTxns ),
.req_t ( full_req_t ),
.resp_t ( full_resp_t )
) i_axi_atop_filter(
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.slv_req_i ( slv_req_i ),
.slv_resp_o ( slv_resp_o ),
.mst_req_o ( filtered_req ),
.mst_resp_i ( filtered_resp )
);
// burst splitter so that the id reflect module has no burst accessing it
axi_burst_splitter #(
.MaxReadTxns ( AxiMaxReadTxns ),
.MaxWriteTxns ( AxiMaxWriteTxns ),
.AddrWidth ( AxiAddrWidth ),
.DataWidth ( AxiDataWidth ),
.IdWidth ( AxiIdWidth ),
.UserWidth ( AxiUserWidth ),
.req_t ( full_req_t ),
.resp_t ( full_resp_t )
) i_axi_burst_splitter (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.slv_req_i ( filtered_req ),
.slv_resp_o ( filtered_resp ),
.mst_req_o ( splitted_req ),
.mst_resp_i ( splitted_resp )
);
// ID reflect module handles the conversion from the full AXI to AXI lite on the wireing
axi_to_axi_lite_id_reflect #(
.AxiIdWidth ( AxiIdWidth ),
.AxiMaxWriteTxns ( AxiMaxWriteTxns ),
.AxiMaxReadTxns ( AxiMaxReadTxns ),
.FallThrough ( FallThrough ),
.full_req_t ( full_req_t ),
.full_resp_t ( full_resp_t ),
.lite_req_t ( lite_req_t ),
.lite_resp_t ( lite_resp_t )
) i_axi_to_axi_lite_id_reflect (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.test_i ( test_i ),
.slv_req_i ( splitted_req ),
.slv_resp_o ( splitted_resp ),
.mst_req_o ( mst_req_o ),
.mst_resp_i ( mst_resp_i )
);
// Assertions, check params
// pragma translate_off
`ifndef VERILATOR
initial begin
assume (AxiIdWidth > 0) else $fatal(1, "AXI ID width has to be > 0");
assume (AxiAddrWidth > 0) else $fatal(1, "AXI address width has to be > 0");
assume (AxiDataWidth > 0) else $fatal(1, "AXI data width has to be > 0");
end
`endif
// pragma translate_on
endmodule
// Description: This module does the translation of the full AXI4+ATOP to AXI4-Lite signals.
// It reflects the ID of the incoming transaction and crops all signals not used
// in AXI4-Lite. It requires that incoming AXI4+ATOP transactions have a
// `axi_pkg::len_t` of `'0` and an `axi_pkg::atop_t` of `'0`.
module axi_to_axi_lite_id_reflect #(
parameter int unsigned AxiIdWidth = 32'd0,
parameter int unsigned AxiMaxWriteTxns = 32'd0,
parameter int unsigned AxiMaxReadTxns = 32'd0,
parameter bit FallThrough = 1'b1, // FIFOs in fall through mode
parameter type full_req_t = logic,
parameter type full_resp_t = logic,
parameter type lite_req_t = logic,
parameter type lite_resp_t = logic
) (
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
input logic test_i, // Testmode enable
// slave port full AXI
input full_req_t slv_req_i,
output full_resp_t slv_resp_o,
// master port AXI LITE
output lite_req_t mst_req_o,
input lite_resp_t mst_resp_i
);
typedef logic [AxiIdWidth-1:0] id_t;
// FIFO status and control signals
logic aw_full, aw_empty, aw_push, aw_pop, ar_full, ar_empty, ar_push, ar_pop;
id_t aw_reflect_id, ar_reflect_id;
assign slv_resp_o = '{
aw_ready: mst_resp_i.aw_ready & ~aw_full,
w_ready: mst_resp_i.w_ready,
b: '{
id: aw_reflect_id,
resp: mst_resp_i.b.resp,
default: '0
},
b_valid: mst_resp_i.b_valid & ~aw_empty,
ar_ready: mst_resp_i.ar_ready & ~ar_full,
r: '{
id: ar_reflect_id,
data: mst_resp_i.r.data,
resp: mst_resp_i.r.resp,
last: 1'b1,
default: '0
},
r_valid: mst_resp_i.r_valid & ~ar_empty,
default: '0
};
// Write ID reflection
assign aw_push = mst_req_o.aw_valid & slv_resp_o.aw_ready;
assign aw_pop = slv_resp_o.b_valid & mst_req_o.b_ready;
fifo_v3 #(
.FALL_THROUGH ( FallThrough ),
.DEPTH ( AxiMaxWriteTxns ),
.dtype ( id_t )
) i_aw_id_fifo (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.flush_i ( 1'b0 ),
.testmode_i( test_i ),
.full_o ( aw_full ),
.empty_o ( aw_empty ),
.usage_o ( /*not used*/ ),
.data_i ( slv_req_i.aw.id ),
.push_i ( aw_push ),
.data_o ( aw_reflect_id ),
.pop_i ( aw_pop )
);
// Read ID reflection
assign ar_push = mst_req_o.ar_valid & slv_resp_o.ar_ready;
assign ar_pop = slv_resp_o.r_valid & mst_req_o.r_ready;
fifo_v3 #(
.FALL_THROUGH ( FallThrough ),
.DEPTH ( AxiMaxReadTxns ),
.dtype ( id_t )
) i_ar_id_fifo (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.flush_i ( 1'b0 ),
.testmode_i( test_i ),
.full_o ( ar_full ),
.empty_o ( ar_empty ),
.usage_o ( /*not used*/ ),
.data_i ( slv_req_i.ar.id ),
.push_i ( ar_push ),
.data_o ( ar_reflect_id ),
.pop_i ( ar_pop )
);
assign mst_req_o = '{
aw: '{
addr: slv_req_i.aw.addr,
prot: slv_req_i.aw.prot
},
aw_valid: slv_req_i.aw_valid & ~aw_full,
w: '{
data: slv_req_i.w.data,
strb: slv_req_i.w.strb
},
w_valid: slv_req_i.w_valid,
b_ready: slv_req_i.b_ready & ~aw_empty,
ar: '{
addr: slv_req_i.ar.addr,
prot: slv_req_i.ar.prot
},
ar_valid: slv_req_i.ar_valid & ~ar_full,
r_ready: slv_req_i.r_ready & ~ar_empty,
default: '0
};
// Assertions
// pragma translate_off
`ifndef VERILATOR
aw_atop: assume property( @(posedge clk_i) disable iff (~rst_ni)
slv_req_i.aw_valid |-> (slv_req_i.aw.atop == '0)) else
$fatal(1, "Module does not support atomics. Value observed: %0b", slv_req_i.aw.atop);
aw_axi_len: assume property( @(posedge clk_i) disable iff (~rst_ni)
slv_req_i.aw_valid |-> (slv_req_i.aw.len == '0)) else
$fatal(1, "AW request length has to be zero. Value observed: %0b", slv_req_i.aw.len);
w_axi_last: assume property( @(posedge clk_i) disable iff (~rst_ni)
slv_req_i.w_valid |-> (slv_req_i.w.last == 1'b1)) else
$fatal(1, "W last signal has to be one. Value observed: %0b", slv_req_i.w.last);
ar_axi_len: assume property( @(posedge clk_i) disable iff (~rst_ni)
slv_req_i.ar_valid |-> (slv_req_i.ar.len == '0)) else
$fatal(1, "AR request length has to be zero. Value observed: %0b", slv_req_i.ar.len);
`endif
// pragma translate_on
endmodule
// interface wrapper
`include "axi/assign.svh"
`include "axi/typedef.svh"
module axi_to_axi_lite_intf #(
/// AXI bus parameters
parameter int unsigned AXI_ADDR_WIDTH = 32'd0,
parameter int unsigned AXI_DATA_WIDTH = 32'd0,
parameter int unsigned AXI_ID_WIDTH = 32'd0,
parameter int unsigned AXI_USER_WIDTH = 32'd0,
/// Maximum number of outstanding writes.
parameter int unsigned AXI_MAX_WRITE_TXNS = 32'd1,
/// Maximum number of outstanding reads.
parameter int unsigned AXI_MAX_READ_TXNS = 32'd1,
parameter bit FALL_THROUGH = 1'b1
) (
input logic clk_i,
input logic rst_ni,
input logic testmode_i,
AXI_BUS.Slave slv,
AXI_LITE.Master mst
);
typedef logic [AXI_ADDR_WIDTH-1:0] addr_t;
typedef logic [AXI_DATA_WIDTH-1:0] data_t;
typedef logic [AXI_ID_WIDTH-1:0] id_t;
typedef logic [AXI_DATA_WIDTH/8-1:0] strb_t;
typedef logic [AXI_USER_WIDTH-1:0] user_t;
// full channels typedefs
`AXI_TYPEDEF_AW_CHAN_T(full_aw_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_W_CHAN_T(full_w_chan_t, data_t, strb_t, user_t)
`AXI_TYPEDEF_B_CHAN_T(full_b_chan_t, id_t, user_t)
`AXI_TYPEDEF_AR_CHAN_T(full_ar_chan_t, addr_t, id_t, user_t)
`AXI_TYPEDEF_R_CHAN_T(full_r_chan_t, data_t, id_t, user_t)
`AXI_TYPEDEF_REQ_T(full_req_t, full_aw_chan_t, full_w_chan_t, full_ar_chan_t)
`AXI_TYPEDEF_RESP_T(full_resp_t, full_b_chan_t, full_r_chan_t)
// LITE channels typedef
`AXI_LITE_TYPEDEF_AW_CHAN_T(lite_aw_chan_t, addr_t)
`AXI_LITE_TYPEDEF_W_CHAN_T(lite_w_chan_t, data_t, strb_t)
`AXI_LITE_TYPEDEF_B_CHAN_T(lite_b_chan_t)
`AXI_LITE_TYPEDEF_AR_CHAN_T(lite_ar_chan_t, addr_t)
`AXI_LITE_TYPEDEF_R_CHAN_T (lite_r_chan_t, data_t)
`AXI_LITE_TYPEDEF_REQ_T(lite_req_t, lite_aw_chan_t, lite_w_chan_t, lite_ar_chan_t)
`AXI_LITE_TYPEDEF_RESP_T(lite_resp_t, lite_b_chan_t, lite_r_chan_t)
full_req_t full_req;
full_resp_t full_resp;
lite_req_t lite_req;
lite_resp_t lite_resp;
`AXI_ASSIGN_TO_REQ(full_req, slv)
`AXI_ASSIGN_FROM_RESP(slv, full_resp)
`AXI_LITE_ASSIGN_FROM_REQ(mst, lite_req)
`AXI_LITE_ASSIGN_TO_RESP(lite_resp, mst)
axi_to_axi_lite #(
.AxiAddrWidth ( AXI_ADDR_WIDTH ),
.AxiDataWidth ( AXI_DATA_WIDTH ),
.AxiIdWidth ( AXI_ID_WIDTH ),
.AxiUserWidth ( AXI_USER_WIDTH ),
.AxiMaxWriteTxns ( AXI_MAX_WRITE_TXNS ),
.AxiMaxReadTxns ( AXI_MAX_READ_TXNS ),
.FallThrough ( FALL_THROUGH ), // FIFOs in Fall through mode in ID reflect
.full_req_t ( full_req_t ),
.full_resp_t ( full_resp_t ),
.lite_req_t ( lite_req_t ),
.lite_resp_t ( lite_resp_t )
) i_axi_to_axi_lite (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.test_i ( testmode_i ),
// slave port full AXI4+ATOP
.slv_req_i ( full_req ),
.slv_resp_o ( full_resp ),
// master port AXI4-Lite
.mst_req_o ( lite_req ),
.mst_resp_i ( lite_resp )
);
endmodule