forked from pulp-platform/axi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
axi_lite_mux.sv
471 lines (428 loc) · 17.2 KB
/
axi_lite_mux.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
// Copyright (c) 2020 ETH Zurich, University of Bologna
//
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
// Author: Wolfgang Roenninger <[email protected]>
// AXI4-Lite Multiplexer: This module multiplexes the AXI4-Lite slave ports down to one master port.
// The multiplexing happens in a round robin fashion, responses get
// sent back in order.
// register macros
`include "common_cells/registers.svh"
module axi_lite_mux #(
// AXI4-Lite parameter and channel types
parameter type aw_chan_t = logic, // AW LITE Channel Type
parameter type w_chan_t = logic, // W LITE Channel Type
parameter type b_chan_t = logic, // B LITE Channel Type
parameter type ar_chan_t = logic, // AR LITE Channel Type
parameter type r_chan_t = logic, // R LITE Channel Type
parameter type req_t = logic, // AXI4-Lite request type
parameter type resp_t = logic, // AXI4-Lite response type
parameter int unsigned NoSlvPorts = 32'd0, // Number of slave ports
// Maximum number of outstanding transactions per write or read
parameter int unsigned MaxTrans = 32'd0,
// If enabled, this multiplexer is purely combinatorial
parameter bit FallThrough = 1'b0,
// add spill register on write master port, adds a cycle latency on write channels
parameter bit SpillAw = 1'b1,
parameter bit SpillW = 1'b0,
parameter bit SpillB = 1'b0,
// add spill register on read master port, adds a cycle latency on read channels
parameter bit SpillAr = 1'b1,
parameter bit SpillR = 1'b0
) (
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
input logic test_i, // Test Mode enable
// slave ports (AXI4-Lite inputs), connect master modules here
input req_t [NoSlvPorts-1:0] slv_reqs_i,
output resp_t [NoSlvPorts-1:0] slv_resps_o,
// master port (AXI4-Lite output), connect slave module here
output req_t mst_req_o,
input resp_t mst_resp_i
);
// pass through if only one slave port
if (NoSlvPorts == 32'h1) begin : gen_no_mux
assign mst_req_o = slv_reqs_i[0];
assign slv_resps_o[0] = mst_resp_i;
// other non degenerate cases
end else begin : gen_mux
// typedef for the FIFO types
typedef logic [$clog2(NoSlvPorts)-1:0] select_t;
// input to the AW arbitration tree, unpacked from request struct
aw_chan_t [NoSlvPorts-1:0] slv_aw_chans;
logic [NoSlvPorts-1:0] slv_aw_valids, slv_aw_readies;
// AW channel arb tree decision
select_t aw_select;
aw_chan_t mst_aw_chan;
logic mst_aw_valid, mst_aw_ready;
// AW master handshake internal, so that we are able to stall, if w_fifo is full
logic aw_valid, aw_ready;
// FF to lock the AW valid signal, when a new arbitration decision is made the decision
// gets pushed into the W FIFO, when it now stalls prevent subsequent pushing
// This FF removes AW to W dependency
logic lock_aw_valid_d, lock_aw_valid_q;
logic load_aw_lock;
// signals for the FIFO that holds the last switching decision of the AW channel
logic w_fifo_full, w_fifo_empty;
logic w_fifo_push, w_fifo_pop;
// W channel spill reg
select_t w_select;
w_chan_t mst_w_chan;
logic mst_w_valid, mst_w_ready;
// switching decision for the B response back routing
select_t b_select;
// signals for the FIFO that holds the last switching decision of the AW channel
logic b_fifo_full, b_fifo_empty;
logic /*w_fifo_pop*/b_fifo_pop;
// B channel spill reg
b_chan_t mst_b_chan;
logic mst_b_valid, mst_b_ready;
// input to the AR arbitration tree, unpacked from request struct
ar_chan_t [NoSlvPorts-1:0] slv_ar_chans;
logic [NoSlvPorts-1:0] slv_ar_valids, slv_ar_readies;
// AR channel for when spill is enabled
select_t ar_select;
ar_chan_t mst_ar_chan;
logic mst_ar_valid, mst_ar_ready;
// AR master handshake internal, so that we are able to stall, if R_fifo is full
logic ar_valid, ar_ready;
// master ID in the r_id
select_t r_select;
// signals for the FIFO that holds the last switching decision of the AR channel
logic r_fifo_full, r_fifo_empty;
logic r_fifo_push, r_fifo_pop;
// R channel spill reg
r_chan_t mst_r_chan;
logic mst_r_valid, mst_r_ready;
//--------------------------------------
// AW Channel
//--------------------------------------
// unpach AW channel from request/response array
for (genvar i = 0; i < NoSlvPorts; i++) begin : gen_aw_arb_input
assign slv_aw_chans[i] = slv_reqs_i[i].aw;
assign slv_aw_valids[i] = slv_reqs_i[i].aw_valid;
assign slv_resps_o[i].aw_ready = slv_aw_readies[i];
end
rr_arb_tree #(
.NumIn ( NoSlvPorts ),
.DataType ( aw_chan_t ),
.AxiVldRdy( 1'b1 ),
.LockIn ( 1'b1 )
) i_aw_arbiter (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.flush_i( 1'b0 ),
.rr_i ( '0 ),
.req_i ( slv_aw_valids ),
.gnt_o ( slv_aw_readies ),
.data_i ( slv_aw_chans ),
.gnt_i ( aw_ready ),
.req_o ( aw_valid ),
.data_o ( mst_aw_chan ),
.idx_o ( aw_select )
);
// control of the AW channel
always_comb begin
// default assignments
lock_aw_valid_d = lock_aw_valid_q;
load_aw_lock = 1'b0;
w_fifo_push = 1'b0;
mst_aw_valid = 1'b0;
aw_ready = 1'b0;
// had a downstream stall, be valid and send the AW along
if (lock_aw_valid_q) begin
mst_aw_valid = 1'b1;
// transaction
if (mst_aw_ready) begin
aw_ready = 1'b1;
lock_aw_valid_d = 1'b0;
load_aw_lock = 1'b1;
end
end else begin
if (!w_fifo_full && aw_valid) begin
mst_aw_valid = 1'b1;
w_fifo_push = 1'b1;
if (mst_aw_ready) begin
aw_ready = 1'b1;
end else begin
// go to lock if transaction not in this cycle
lock_aw_valid_d = 1'b1;
load_aw_lock = 1'b1;
end
end
end
end
`FFLARN(lock_aw_valid_q, lock_aw_valid_d, load_aw_lock, '0, clk_i, rst_ni)
fifo_v3 #(
.FALL_THROUGH ( FallThrough ),
.DEPTH ( MaxTrans ),
.dtype ( select_t )
) i_w_fifo (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.flush_i ( 1'b0 ),
.testmode_i( test_i ),
.full_o ( w_fifo_full ),
.empty_o ( w_fifo_empty ),
.usage_o ( ),
.data_i ( aw_select ),
.push_i ( w_fifo_push ),
.data_o ( w_select ),
.pop_i ( w_fifo_pop )
);
spill_register #(
.T ( aw_chan_t ),
.Bypass ( ~SpillAw ) // Param indicated that we want a spill reg
) i_aw_spill_reg (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.valid_i ( mst_aw_valid ),
.ready_o ( mst_aw_ready ),
.data_i ( mst_aw_chan ),
.valid_o ( mst_req_o.aw_valid ),
.ready_i ( mst_resp_i.aw_ready ),
.data_o ( mst_req_o.aw )
);
//--------------------------------------
// W Channel
//--------------------------------------
// multiplexer
assign mst_w_chan = (!w_fifo_empty && !b_fifo_full) ? slv_reqs_i[w_select].w : '0;
assign mst_w_valid = (!w_fifo_empty && !b_fifo_full) ? slv_reqs_i[w_select].w_valid : 1'b0;
for (genvar i = 0; i < NoSlvPorts; i++) begin : gen_slv_w_ready
assign slv_resps_o[i].w_ready = mst_w_ready & ~w_fifo_empty &
~b_fifo_full & (w_select == select_t'(i));
end
assign w_fifo_pop = mst_w_valid & mst_w_ready;
fifo_v3 #(
.FALL_THROUGH ( FallThrough ),
.DEPTH ( MaxTrans ),
.dtype ( select_t )
) i_b_fifo (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.flush_i ( 1'b0 ),
.testmode_i( test_i ),
.full_o ( b_fifo_full ),
.empty_o ( b_fifo_empty ),
.usage_o ( ),
.data_i ( w_select ),
.push_i ( w_fifo_pop ), // push the selection for the B channel on W transaction
.data_o ( b_select ),
.pop_i ( b_fifo_pop )
);
spill_register #(
.T ( w_chan_t ),
.Bypass ( ~SpillW )
) i_w_spill_reg (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.valid_i ( mst_w_valid ),
.ready_o ( mst_w_ready ),
.data_i ( mst_w_chan ),
.valid_o ( mst_req_o.w_valid ),
.ready_i ( mst_resp_i.w_ready ),
.data_o ( mst_req_o.w )
);
//--------------------------------------
// B Channel
//--------------------------------------
// replicate B channels
for (genvar i = 0; i < NoSlvPorts; i++) begin : gen_slv_resps_b
assign slv_resps_o[i].b = mst_b_chan;
assign slv_resps_o[i].b_valid = mst_b_valid & ~b_fifo_empty & (b_select == select_t'(i));
end
assign mst_b_ready = ~b_fifo_empty & slv_reqs_i[b_select].b_ready;
assign b_fifo_pop = mst_b_valid & mst_b_ready;
spill_register #(
.T ( b_chan_t ),
.Bypass ( ~SpillB )
) i_b_spill_reg (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.valid_i ( mst_resp_i.b_valid ),
.ready_o ( mst_req_o.b_ready ),
.data_i ( mst_resp_i.b ),
.valid_o ( mst_b_valid ),
.ready_i ( mst_b_ready ),
.data_o ( mst_b_chan )
);
//--------------------------------------
// AR Channel
//--------------------------------------
// unpack AR channel from request/response struct
for (genvar i = 0; i < NoSlvPorts; i++) begin : gen_ar_arb_input
assign slv_ar_chans[i] = slv_reqs_i[i].ar;
assign slv_ar_valids[i] = slv_reqs_i[i].ar_valid;
assign slv_resps_o[i].ar_ready = slv_ar_readies[i];
end
rr_arb_tree #(
.NumIn ( NoSlvPorts ),
.DataType ( ar_chan_t ),
.AxiVldRdy( 1'b1 ),
.LockIn ( 1'b1 )
) i_ar_arbiter (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.flush_i( 1'b0 ),
.rr_i ( '0 ),
.req_i ( slv_ar_valids ),
.gnt_o ( slv_ar_readies ),
.data_i ( slv_ar_chans ),
.gnt_i ( ar_ready ),
.req_o ( ar_valid ),
.data_o ( mst_ar_chan ),
.idx_o ( ar_select )
);
// connect the handshake if there is space in the FIFO, no need for valid locking
// as the R response is only allowed, when AR is transferred
assign mst_ar_valid = (!r_fifo_full) ? ar_valid : 1'b0;
assign ar_ready = (!r_fifo_full) ? mst_ar_ready : 1'b0;
assign r_fifo_push = mst_ar_valid & mst_ar_ready;
fifo_v3 #(
.FALL_THROUGH ( FallThrough ),
.DEPTH ( MaxTrans ),
.dtype ( select_t )
) i_r_fifo (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.flush_i ( 1'b0 ),
.testmode_i( test_i ),
.full_o ( r_fifo_full ),
.empty_o ( r_fifo_empty ),
.usage_o ( ),
.data_i ( ar_select ),
.push_i ( r_fifo_push ), // push the selection when w transaction happens
.data_o ( r_select ),
.pop_i ( r_fifo_pop )
);
spill_register #(
.T ( ar_chan_t ),
.Bypass ( ~SpillAr )
) i_ar_spill_reg (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.valid_i ( mst_ar_valid ),
.ready_o ( mst_ar_ready ),
.data_i ( mst_ar_chan ),
.valid_o ( mst_req_o.ar_valid ),
.ready_i ( mst_resp_i.ar_ready ),
.data_o ( mst_req_o.ar )
);
//--------------------------------------
// R Channel
//--------------------------------------
// replicate R channels
for (genvar i = 0; i < NoSlvPorts; i++) begin : gen_slv_resps_r
assign slv_resps_o[i].r = mst_r_chan;
assign slv_resps_o[i].r_valid = mst_r_valid & ~r_fifo_empty & (r_select == select_t'(i));
end
assign mst_r_ready = ~r_fifo_empty & slv_reqs_i[r_select].r_ready;
assign r_fifo_pop = mst_r_valid & mst_r_ready;
spill_register #(
.T ( r_chan_t ),
.Bypass ( ~SpillR )
) i_r_spill_reg (
.clk_i ( clk_i ),
.rst_ni ( rst_ni ),
.valid_i ( mst_resp_i.r_valid ),
.ready_o ( mst_req_o.r_ready ),
.data_i ( mst_resp_i.r ),
.valid_o ( mst_r_valid ),
.ready_i ( mst_r_ready ),
.data_o ( mst_r_chan )
);
end
// pragma translate_off
`ifndef VERILATOR
initial begin: p_assertions
NoPorts: assert (NoSlvPorts > 0) else $fatal("Number of slave ports must be at least 1!");
MaxTnx: assert (MaxTrans > 0) else $fatal("Number of transactions must be at least 1!");
end
`endif
// pragma translate_on
endmodule
// interface wrap
`include "axi/assign.svh"
`include "axi/typedef.svh"
module axi_lite_mux_intf #(
parameter int unsigned AxiAddrWidth = 32'd0,
parameter int unsigned AxiDataWidth = 32'd0,
parameter int unsigned NoSlvPorts = 32'd0, // Number of slave ports
// Maximum number of outstanding transactions per write
parameter int unsigned MaxTrans = 32'd0,
// if enabled, this multiplexer is purely combinatorial
parameter bit FallThrough = 1'b0,
// add spill register on write master ports, adds a cycle latency on write channels
parameter bit SpillAw = 1'b1,
parameter bit SpillW = 1'b0,
parameter bit SpillB = 1'b0,
// add spill register on read master ports, adds a cycle latency on read channels
parameter bit SpillAr = 1'b1,
parameter bit SpillR = 1'b0
) (
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
input logic test_i, // Testmode enable
AXI_BUS.Slave slv [NoSlvPorts-1:0], // slave ports
AXI_BUS.Master mst // master port
);
typedef logic [AxiAddrWidth-1:0] addr_t;
typedef logic [AxiDataWidth-1:0] data_t;
typedef logic [AxiDataWidth/8-1:0] strb_t;
// channels typedef
`AXI_LITE_TYPEDEF_AW_CHAN_T(aw_chan_t, addr_t)
`AXI_LITE_TYPEDEF_W_CHAN_T(w_chan_t, data_t, strb_t)
`AXI_LITE_TYPEDEF_B_CHAN_T(b_chan_t)
`AXI_LITE_TYPEDEF_AR_CHAN_T(ar_chan_t, addr_t)
`AXI_LITE_TYPEDEF_R_CHAN_T(r_chan_t, data_t)
`AXI_LITE_TYPEDEF_REQ_T(req_t, aw_chan_t, w_chan_t, ar_chan_t)
`AXI_LITE_TYPEDEF_RESP_T(resp_t, b_chan_t, r_chan_t)
req_t [NoSlvPorts-1:0] slv_reqs;
resp_t [NoSlvPorts-1:0] slv_resps;
req_t mst_req;
resp_t mst_resp;
for (genvar i = 0; i < NoSlvPorts; i++) begin : gen_assign_slv_ports
`AXI_LITE_ASSIGN_TO_REQ(slv_reqs[i], slv[i])
`AXI_LITE_ASSIGN_FROM_RESP(slv[i], slv_resps[i])
end
`AXI_LITE_ASSIGN_FROM_REQ(mst, mst_req)
`AXI_LITE_ASSIGN_TO_RESP(mst_resp, mst)
axi_lite_mux #(
.aw_chan_t ( aw_chan_t ), // AW Channel Type
.w_chan_t ( w_chan_t ), // W Channel Type
.b_chan_t ( b_chan_t ), // B Channel Type
.ar_chan_t ( ar_chan_t ), // AR Channel Type
.r_chan_t ( r_chan_t ), // R Channel Type
.NoSlvPorts ( NoSlvPorts ), // Number of slave ports
.MaxTrans ( MaxTrans ),
.FallThrough ( FallThrough ),
.SpillAw ( SpillAw ),
.SpillW ( SpillW ),
.SpillB ( SpillB ),
.SpillAr ( SpillAr ),
.SpillR ( SpillR )
) i_axi_mux (
.clk_i, // Clock
.rst_ni, // Asynchronous reset active low
.test_i, // Test Mode enable
.slv_reqs_i ( slv_reqs ),
.slv_resps_o ( slv_resps ),
.mst_req_o ( mst_req ),
.mst_resp_i ( mst_resp )
);
// pragma translate_off
`ifndef VERILATOR
initial begin: p_assertions
AddrWidth: assert (AxiAddrWidth > 0) else $fatal("Axi Parameter has to be > 0!");
DataWidth: assert (AxiDataWidth > 0) else $fatal("Axi Parameter has to be > 0!");
end
`endif
// pragma translate_on
endmodule