forked from pulp-platform/axi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
axi_lite_mailbox.sv
623 lines (588 loc) · 25.5 KB
/
axi_lite_mailbox.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
// Copyright (c) 2020 ETH Zurich and University of Bologna
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
// Author: Wolfgang Roenninger <[email protected]>
// Description: A mailbox with two AXI4-Lite slave ports and associated interrupt requests.
// See `doc/axi_lite_mailbox.md` for the documentation, including the definition
// of parameters and ports.
`include "common_cells/registers.svh"
module axi_lite_mailbox #(
parameter int unsigned MailboxDepth = 32'd0,
parameter bit unsigned IrqEdgeTrig = 1'b0,
parameter bit unsigned IrqActHigh = 1'b1,
parameter int unsigned AxiAddrWidth = 32'd0,
parameter int unsigned AxiDataWidth = 32'd0,
parameter type req_lite_t = logic,
parameter type resp_lite_t = logic,
// DEPENDENT PARAMETERS, DO NOT OVERRIDE!
parameter type addr_t = logic [AxiAddrWidth-1:0]
) (
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
input logic test_i, // Testmode enable
// slave ports [1:0]
input req_lite_t [1:0] slv_reqs_i,
output resp_lite_t [1:0] slv_resps_o,
output logic [1:0] irq_o, // interrupt output for each port
input addr_t [1:0] base_addr_i // base address for each port
);
localparam int unsigned FifoUsageWidth = $clog2(MailboxDepth);
typedef logic [AxiDataWidth-1:0] data_t;
// usage type of the mailbox FIFO, also the type of the threshold comparison
// is one bit wider, MSB is the fifo_full flag of the respective fifo
typedef logic [FifoUsageWidth:0] usage_t;
// signal declaration for the mailbox FIFO's, signal index is the port
logic [1:0] mbox_full, mbox_empty; // index is the instantiated mailbox FIFO
logic [1:0] mbox_push, mbox_pop; // index is port
logic [1:0] w_mbox_flush, r_mbox_flush; // index is port
data_t [1:0] mbox_w_data, mbox_r_data; // index is port
usage_t [1:0] mbox_usage; // index is the instantiated mailbox FIFO
// interrupt request from this slave port, level triggered, active high --> convert
logic [1:0] slv_irq;
logic [1:0] clear_irq;
axi_lite_mailbox_slave #(
.MailboxDepth ( MailboxDepth ),
.AxiAddrWidth ( AxiAddrWidth ),
.AxiDataWidth ( AxiDataWidth ),
.req_lite_t ( req_lite_t ),
.resp_lite_t ( resp_lite_t ),
.addr_t ( addr_t ),
.data_t ( data_t ),
.usage_t ( usage_t ) // fill pointer from MBOX FIFO
) i_slv_port_0 (
.clk_i, // Clock
.rst_ni, // Asynchronous reset active low
// slave port
.slv_req_i ( slv_reqs_i[0] ),
.slv_resp_o ( slv_resps_o[0] ),
.base_addr_i ( base_addr_i[0] ), // base address for the slave port
// write FIFO port
.mbox_w_data_o ( mbox_w_data[0] ),
.mbox_w_full_i ( mbox_full[0] ),
.mbox_w_push_o ( mbox_push[0] ),
.mbox_w_flush_o ( w_mbox_flush[0] ),
.mbox_w_usage_i ( mbox_usage[0] ),
// read FIFO port
.mbox_r_data_i ( mbox_r_data[0] ),
.mbox_r_empty_i ( mbox_empty[1] ),
.mbox_r_pop_o ( mbox_pop[0] ),
.mbox_r_flush_o ( r_mbox_flush[0] ),
.mbox_r_usage_i ( mbox_usage[1] ),
// interrupt output, level triggered, active high, conversion in top
.irq_o ( slv_irq[0] ),
.clear_irq_o ( clear_irq[0] )
);
axi_lite_mailbox_slave #(
.MailboxDepth ( MailboxDepth ),
.AxiAddrWidth ( AxiAddrWidth ),
.AxiDataWidth ( AxiDataWidth ),
.req_lite_t ( req_lite_t ),
.resp_lite_t ( resp_lite_t ),
.addr_t ( addr_t ),
.data_t ( data_t ),
.usage_t ( usage_t ) // fill pointer from MBOX FIFO
) i_slv_port_1 (
.clk_i, // Clock
.rst_ni, // Asynchronous reset active low
// slave port
.slv_req_i ( slv_reqs_i[1] ),
.slv_resp_o ( slv_resps_o[1] ),
.base_addr_i ( base_addr_i[1] ), // base address for the slave port
// write FIFO port
.mbox_w_data_o ( mbox_w_data[1] ),
.mbox_w_full_i ( mbox_full[1] ),
.mbox_w_push_o ( mbox_push[1] ),
.mbox_w_flush_o ( w_mbox_flush[1] ),
.mbox_w_usage_i ( mbox_usage[1] ),
// read FIFO port
.mbox_r_data_i ( mbox_r_data[1] ),
.mbox_r_empty_i ( mbox_empty[0] ),
.mbox_r_pop_o ( mbox_pop[1] ),
.mbox_r_flush_o ( r_mbox_flush[1] ),
.mbox_r_usage_i ( mbox_usage[0] ),
// interrupt output, level triggered, active high, conversion in top
.irq_o ( slv_irq[1] ),
.clear_irq_o ( clear_irq[1] )
);
// the usage gets concatinated with the full flag to have consistent threshold detection
logic [FifoUsageWidth-1:0] mbox_0_to_1_usage, mbox_1_to_0_usage;
fifo_v3 #(
.FALL_THROUGH ( 1'b0 ),
.DEPTH ( MailboxDepth ),
.dtype ( data_t )
) i_mbox_0_to_1 (
.clk_i,
.rst_ni,
.testmode_i( test_i ),
.flush_i ( w_mbox_flush[0] | r_mbox_flush[1] ),
.full_o ( mbox_full[0] ),
.empty_o ( mbox_empty[0] ),
.usage_o ( mbox_0_to_1_usage ),
.data_i ( mbox_w_data[0] ),
.push_i ( mbox_push[0] ),
.data_o ( mbox_r_data[1] ),
.pop_i ( mbox_pop[1] )
);
// assign the MSB of the FIFO to the correct usage signal
assign mbox_usage[0] = {mbox_full[0], mbox_0_to_1_usage};
fifo_v3 #(
.FALL_THROUGH ( 1'b0 ),
.DEPTH ( MailboxDepth ),
.dtype ( data_t )
) i_mbox_1_to_0 (
.clk_i,
.rst_ni,
.testmode_i( test_i ),
.flush_i ( w_mbox_flush[1] | r_mbox_flush[0] ),
.full_o ( mbox_full[1] ),
.empty_o ( mbox_empty[1] ),
.usage_o ( mbox_1_to_0_usage ),
.data_i ( mbox_w_data[1] ),
.push_i ( mbox_push[1] ),
.data_o ( mbox_r_data[0] ),
.pop_i ( mbox_pop[0] )
);
assign mbox_usage[1] = {mbox_full[1], mbox_1_to_0_usage};
for (genvar i = 0; i < 2; i++) begin : gen_irq_conversion
if (IrqEdgeTrig) begin : gen_irq_edge
logic irq_q, irq_d, update_irq;
always_comb begin
// default assignments
irq_d = irq_q;
update_irq = 1'b0;
// init the irq and pulse only on update
irq_o[i] = ~IrqActHigh;
if (clear_irq[i]) begin
irq_d = 1'b0;
update_irq = 1'b1;
end else if (!irq_q && slv_irq[i]) begin
irq_d = 1'b1;
update_irq = 1'b1;
irq_o[i] = IrqActHigh; // on update of the register pulse the irq signal
end
end
`FFLARN(irq_q, irq_d, update_irq, '0, clk_i, rst_ni)
end else begin : gen_irq_level
assign irq_o[i] = (IrqActHigh) ? slv_irq[i] : ~slv_irq[i];
end
end
// pragma translate_off
`ifndef VERILATOR
initial begin : proc_check_params
mailbox_depth: assert (MailboxDepth > 1) else $fatal(1, "MailboxDepth has to be at least 2");
axi_addr_width: assert (AxiAddrWidth > 0) else $fatal(1, "AxiAddrWidth has to be > 0");
axi_data_width: assert (AxiDataWidth > 0) else $fatal(1, "AxiDataWidth has to be > 0");
end
`endif
// pragma translate_on
endmodule
`include "axi/typedef.svh"
// slave port module
module axi_lite_mailbox_slave #(
parameter int unsigned MailboxDepth = 32'd16,
parameter int unsigned AxiAddrWidth = 32'd32,
parameter int unsigned AxiDataWidth = 32'd32,
parameter type req_lite_t = logic,
parameter type resp_lite_t = logic,
parameter type addr_t = logic [AxiAddrWidth-1:0],
parameter type data_t = logic [AxiDataWidth-1:0],
parameter type usage_t = logic // fill pointer from MBOX FIFO
) (
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
// slave port
input req_lite_t slv_req_i,
output resp_lite_t slv_resp_o,
input addr_t base_addr_i, // base address for the slave port
// write FIFO port
output data_t mbox_w_data_o,
input logic mbox_w_full_i,
output logic mbox_w_push_o,
output logic mbox_w_flush_o,
input usage_t mbox_w_usage_i,
// read FIFO port
input data_t mbox_r_data_i,
input logic mbox_r_empty_i,
output logic mbox_r_pop_o,
output logic mbox_r_flush_o,
input usage_t mbox_r_usage_i,
// interrupt output, level triggered, active high, conversion in top
output logic irq_o,
output logic clear_irq_o // clear the edge trigger irq register in `axi_lite_mailbox`
);
`AXI_LITE_TYPEDEF_B_CHAN_T(b_chan_lite_t)
`AXI_LITE_TYPEDEF_R_CHAN_T(r_chan_lite_t, data_t)
localparam int unsigned NoRegs = 32'd10;
typedef enum logic [3:0] {
MBOXW = 4'd0, // Mailbox write register
MBOXR = 4'd1, // Mailbox read register
STATUS = 4'd2, // Mailbox status register
ERROR = 4'd3, // Mailbox error register
WIRQT = 4'd4, // Write interrupt request threshold register
RIRQT = 4'd5, // Read interrupt request threshold register
IRQS = 4'd6, // Interrupt request status register
IRQEN = 4'd7, // Interrupt request enable register
IRQP = 4'd8, // Interrupt request pending register
CTRL = 4'd9 // Mailbox control register
} reg_e;
// address map rule struct, as required from `addr_decode` from `common_cells`
typedef struct packed {
int unsigned idx;
addr_t start_addr;
addr_t end_addr;
} rule_t;
// output type of the address decoders, to be casted onto the enum type `reg_e`
typedef logic [$clog2(NoRegs)-1:0] idx_t;
// LITE response signals, go into the output spill registers to prevent combinational response
logic b_valid, b_ready;
b_chan_lite_t b_chan;
logic r_valid, r_ready;
r_chan_lite_t r_chan;
// address map generation
rule_t [NoRegs-1:0] addr_map;
for (genvar i = 0; i < NoRegs; i++) begin : gen_addr_map
assign addr_map[i] = '{
idx: i,
start_addr: base_addr_i + i * (AxiDataWidth / 8),
end_addr: base_addr_i + (i + 1) * (AxiDataWidth / 8),
default: '0
};
end
// address decode flags
idx_t w_reg_idx, r_reg_idx;
logic dec_w_valid, dec_r_valid;
// mailbox register signal declarations, get extended when read, some of these regs
// are build combinationally, indicated by the absence of the `*_d` signal
logic [3:0] status_q; // mailbox status register (read only)
logic [1:0] error_q, error_d; // mailbox error register
data_t wirqt_q, wirqt_d; // write interrupt request threshold register
data_t rirqt_q, rirqt_d; // read interrupt request threshold register
logic [2:0] irqs_q, irqs_d; // interrupt request status register
logic [2:0] irqen_q, irqen_d; // interrupt request enable register
logic [2:0] irqp_q; // interrupt request pending register (read only)
logic [1:0] ctrl_q; // mailbox control register
logic update_regs; // register enable signal
// register instantiation
`FFLARN(error_q, error_d, update_regs, '0, clk_i, rst_ni)
`FFLARN(wirqt_q, wirqt_d, update_regs, '0, clk_i, rst_ni)
`FFLARN(rirqt_q, rirqt_d, update_regs, '0, clk_i, rst_ni)
`FFLARN(irqs_q, irqs_d, update_regs, '0, clk_i, rst_ni)
`FFLARN(irqen_q, irqen_d, update_regs, '0, clk_i, rst_ni)
// Mailbox FIFO data assignments
for (genvar i = 0; i < (AxiDataWidth/8); i++) begin : gen_w_mbox_data
assign mbox_w_data_o[i*8+:8] = slv_req_i.w.strb[i] ? slv_req_i.w.data[i*8+:8] : '0;
end
// combinational mailbox register assignments, for the read only registers
assign status_q = { mbox_r_usage_i > usage_t'(rirqt_q),
mbox_w_usage_i > usage_t'(wirqt_q),
mbox_w_full_i,
mbox_r_empty_i };
assign irqp_q = irqs_q & irqen_q; // interrupt request pending is bit wise and
assign ctrl_q = {mbox_r_flush_o, mbox_w_flush_o}; // read ctrl_q is flush signals
assign irq_o = |irqp_q; // generate an active-high level irq
always_comb begin
// slave port channel outputs for the AW, W and R channel, other driven from spill register
slv_resp_o.aw_ready = 1'b0;
slv_resp_o.w_ready = 1'b0;
b_chan = '{resp: axi_pkg::RESP_SLVERR};
b_valid = 1'b0;
slv_resp_o.ar_ready = 1'b0;
r_chan = '{data: '0, resp: axi_pkg::RESP_SLVERR};
r_valid = 1'b0;
// Default assignments for the internal registers
error_d = error_q; // mailbox error register
wirqt_d = wirqt_q; // write interrupt request threshold register
rirqt_d = rirqt_q; // read interrupt request threshold register
irqs_d = irqs_q; // interrupt request status register
irqen_d = irqen_q; // interrupt request enable register
update_regs = 1'b0; // register update enable signal
// MBOX FIFO control signals
mbox_w_push_o = 1'b0;
mbox_w_flush_o = 1'b0;
mbox_r_pop_o = 1'b0;
mbox_r_flush_o = 1'b0;
// clear the edge triggered irq register if it is instantiated
clear_irq_o = 1'b0;
// -------------------------------------------
// Set the read and write interrupt FF (irqs), when the threshold triggers
// -------------------------------------------
// strict threshold interrupt these fields get cleared by acknowledge on write onto the register
// read trigger, see status_q above
if (!irqs_q[1] && status_q[3]) begin
irqs_d[1] = 1'b1;
update_regs = 1'b1;
end
// write trigger, see status_q above
if (!irqs_q[0] && status_q[2]) begin
irqs_d[0] = 1'b1;
update_regs = 1'b1;
end
// -------------------------------------------
// Read registers
// -------------------------------------------
// The logic of the read and write channels have to be in the same `always_comb` block.
// The reason is that the error register could be cleared in the same cycle as a read from
// the mailbox FIFO generates a new error. In this case the error is NOT cleared. Instead
// it will generate a new irq when it is edge triggered, or the level will stay at its
// active state.
// Check if there is a pending read request on the slave port.
if (slv_req_i.ar_valid) begin
// set the right read channel output depending on the address decoding
if (dec_r_valid) begin
// when decode not valid, send the default slaveerror
// read the right register when the transfer happens and decode is valid
unique case (reg_e'(r_reg_idx))
MBOXW: r_chan = '{data: data_t'( 32'hFEEDC0DE ), resp: axi_pkg::RESP_OKAY};
MBOXR: begin
if (!mbox_r_empty_i) begin
r_chan = '{data: data_t'( mbox_r_data_i ), resp: axi_pkg::RESP_OKAY};
mbox_r_pop_o = 1'b1;
end else begin
// read mailbox is empty, set the read error Flip flop and respond with error
r_chan = '{data: data_t'( 32'hFEEDDEAD ), resp: axi_pkg::RESP_SLVERR};
error_d[0] = 1'b1;
irqs_d[2] = 1'b1;
update_regs = 1'b1;
end
end
STATUS: r_chan = '{data: data_t'( status_q ), resp: axi_pkg::RESP_OKAY};
ERROR: begin // clear the error register
r_chan = '{data: data_t'( error_q ), resp: axi_pkg::RESP_OKAY};
error_d = '0;
update_regs = 1'b1;
end
WIRQT: r_chan = '{data: data_t'( wirqt_q ), resp: axi_pkg::RESP_OKAY};
RIRQT: r_chan = '{data: data_t'( rirqt_q ), resp: axi_pkg::RESP_OKAY};
IRQS: r_chan = '{data: data_t'( irqs_q ), resp: axi_pkg::RESP_OKAY};
IRQEN: r_chan = '{data: data_t'( irqen_q ), resp: axi_pkg::RESP_OKAY};
IRQP: r_chan = '{data: data_t'( irqp_q ), resp: axi_pkg::RESP_OKAY};
CTRL: r_chan = '{data: data_t'( ctrl_q ), resp: axi_pkg::RESP_OKAY};
default: /*do nothing*/;
endcase
end
r_valid = 1'b1;
if (r_ready) begin
slv_resp_o.ar_ready = 1'b1;
end
end // read register
// -------------------------------------------
// Write registers
// -------------------------------------------
// Wait for control and write data to be valid.
if (slv_req_i.aw_valid && slv_req_i.w_valid) begin
// Can do the handshake here as the b response goes into a spill register with latency one.
// Without the B spill register, the B channel would violate the AXI stable requirement.
b_valid = 1'b1;
if (b_ready) begin
// write to the register if required
if (dec_w_valid) begin
unique case (reg_e'(w_reg_idx))
MBOXW: begin
if (!mbox_w_full_i) begin
mbox_w_push_o = 1'b1;
b_chan = '{resp: axi_pkg::RESP_OKAY};
end else begin
// response with default error and set the error FF
error_d[1] = 1'b1;
irqs_d[2] = 1'b1;
update_regs = 1'b1;
end
end
// MBOXR: read only
// STATUS: read only
// ERROR: read only
WIRQT: begin
for (int unsigned i = 0; i < AxiDataWidth/8; i++) begin
wirqt_d[i*8+:8] = slv_req_i.w.strb[i] ? slv_req_i.w.data[i*8+:8] : 8'b0000_0000;
end
if (wirqt_d >= data_t'(MailboxDepth)) begin
// the `-1` is to have the interrupt fireing when the FIFO is comletely full
wirqt_d = data_t'(MailboxDepth) - data_t'(32'd1); // Threshold to maximal value
end
update_regs = 1'b1;
b_chan = '{resp: axi_pkg::RESP_OKAY};
end
RIRQT: begin
for (int unsigned i = 0; i < AxiDataWidth/8; i++) begin
rirqt_d[i*8+:8] = slv_req_i.w.strb[i] ? slv_req_i.w.data[i*8+:8] : 8'b0000_0000;
end
if (rirqt_d >= data_t'(MailboxDepth)) begin
// Threshold to maximal value, minus two to prevent overflow in usage
rirqt_d = data_t'(MailboxDepth) - data_t'(32'd1);
end
update_regs = 1'b1;
b_chan = '{resp: axi_pkg::RESP_OKAY};
end
IRQS: begin
// Acknowledge and clear the register by asserting the respective one
if (slv_req_i.w.strb[0]) begin
// *_d signal is set in the beginning of this process, prevent accidental
// overwrite of not acknowledged irq
irqs_d[2] = slv_req_i.w.data[2] ? 1'b0 : irqs_d[2]; // Error irq status
irqs_d[1] = slv_req_i.w.data[1] ? 1'b0 : irqs_d[1]; // Read irq status
irqs_d[0] = slv_req_i.w.data[0] ? 1'b0 : irqs_d[0]; // Write irq status
clear_irq_o = 1'b1;
update_regs = 1'b1;
end
b_chan = '{resp: axi_pkg::RESP_OKAY};
end
IRQEN: begin
if (slv_req_i.w.strb[0]) begin
irqen_d[2:0] = slv_req_i.w.data[2:0]; // set the irq enable bits
update_regs = 1'b1;
end
b_chan = '{resp: axi_pkg::RESP_OKAY};
end
// IRQP: read only
CTRL: begin
if (slv_req_i.w.strb[0]) begin
mbox_r_flush_o = slv_req_i.w.data[1]; // Flush read FIFO
mbox_w_flush_o = slv_req_i.w.data[0]; // Flush write FIFO
end
b_chan = '{resp: axi_pkg::RESP_OKAY};
end
default : /* use default b_chan */;
endcase
end
slv_resp_o.aw_ready = 1'b1;
slv_resp_o.w_ready = 1'b1;
end // if (b_ready): Does not violate AXI spec, because the ready comes from an internal
// spill register and does not propagate the ready from the b channel.
end // write register
end
// address decoder and response FIFOs for the LITE channel, the port can take a new transaction if
// these FIFOs are not full, not fall through to prevent combinational paths to the return path
addr_decode #(
.NoIndices( NoRegs ),
.NoRules ( NoRegs ),
.addr_t ( addr_t ),
.rule_t ( rule_t )
) i_waddr_decode (
.addr_i ( slv_req_i.aw.addr ),
.addr_map_i ( addr_map ),
.idx_o ( w_reg_idx ),
.dec_valid_o ( dec_w_valid ),
.dec_error_o ( /*not used*/ ),
.en_default_idx_i ( 1'b0 ),
.default_idx_i ( '0 )
);
spill_register #(
.T ( b_chan_lite_t )
) i_b_chan_outp (
.clk_i,
.rst_ni,
.valid_i ( b_valid ),
.ready_o ( b_ready ),
.data_i ( b_chan ),
.valid_o ( slv_resp_o.b_valid ),
.ready_i ( slv_req_i.b_ready ),
.data_o ( slv_resp_o.b )
);
addr_decode #(
.NoIndices( NoRegs ),
.NoRules ( NoRegs ),
.addr_t ( addr_t ),
.rule_t ( rule_t )
) i_raddr_decode (
.addr_i ( slv_req_i.ar.addr ),
.addr_map_i ( addr_map ),
.idx_o ( r_reg_idx ),
.dec_valid_o ( dec_r_valid ),
.dec_error_o ( /*not used*/ ),
.en_default_idx_i ( 1'b0 ),
.default_idx_i ( '0 )
);
spill_register #(
.T ( r_chan_lite_t )
) i_r_chan_outp (
.clk_i,
.rst_ni,
.valid_i ( r_valid ),
.ready_o ( r_ready ),
.data_i ( r_chan ),
.valid_o ( slv_resp_o.r_valid ),
.ready_i ( slv_req_i.r_ready ),
.data_o ( slv_resp_o.r )
);
// pragma translate_off
`ifndef VERILATOR
initial begin : proc_check_params
assert (AxiAddrWidth == $bits(slv_req_i.aw.addr)) else $fatal(1, "AW AxiAddrWidth mismatch");
assert (AxiDataWidth == $bits(slv_req_i.w.data)) else $fatal(1, " W AxiDataWidth mismatch");
assert (AxiAddrWidth == $bits(slv_req_i.ar.addr)) else $fatal(1, "AR AxiAddrWidth mismatch");
assert (AxiDataWidth == $bits(slv_resp_o.r.data)) else $fatal(1, " R AxiDataWidth mismatch");
end
`endif
// pragma translate_on
endmodule
`include "axi/assign.svh"
module axi_lite_mailbox_intf #(
parameter int unsigned MAILBOX_DEPTH = 32'd0,
parameter bit unsigned IRQ_EDGE_TRIG = 1'b0,
parameter bit unsigned IRQ_ACT_HIGH = 1'b1,
parameter int unsigned AXI_ADDR_WIDTH = 32'd0,
parameter int unsigned AXI_DATA_WIDTH = 32'd0,
// DEPENDENT PARAMETERS, DO NOT OVERRIDE!
parameter type addr_t = logic [AXI_ADDR_WIDTH-1:0]
) (
input logic clk_i, // Clock
input logic rst_ni, // Asynchronous reset active low
input logic test_i, // Testmode enable
AXI_LITE.Slave slv [1:0], // slave ports [1:0]
output logic [1:0] irq_o, // interrupt output for each port
input addr_t [1:0] base_addr_i // base address for each port
);
typedef logic [AXI_DATA_WIDTH-1:0] data_t;
typedef logic [AXI_DATA_WIDTH/8-1:0] strb_t;
`AXI_LITE_TYPEDEF_AW_CHAN_T(aw_chan_lite_t, addr_t)
`AXI_LITE_TYPEDEF_W_CHAN_T(w_chan_lite_t, data_t, strb_t)
`AXI_LITE_TYPEDEF_B_CHAN_T(b_chan_lite_t)
`AXI_LITE_TYPEDEF_AR_CHAN_T(ar_chan_lite_t, addr_t)
`AXI_LITE_TYPEDEF_R_CHAN_T(r_chan_lite_t, data_t)
`AXI_LITE_TYPEDEF_REQ_T(req_lite_t, aw_chan_lite_t, w_chan_lite_t, ar_chan_lite_t)
`AXI_LITE_TYPEDEF_RESP_T(resp_lite_t, b_chan_lite_t, r_chan_lite_t)
req_lite_t [1:0] slv_reqs;
resp_lite_t [1:0] slv_resps;
for (genvar i = 0; i < 2; i++) begin : gen_port_assign
`AXI_LITE_ASSIGN_TO_REQ(slv_reqs[i], slv[i])
`AXI_LITE_ASSIGN_FROM_RESP(slv[i], slv_resps[i])
end
axi_lite_mailbox #(
.MailboxDepth ( MAILBOX_DEPTH ),
.IrqEdgeTrig ( IRQ_EDGE_TRIG ),
.IrqActHigh ( IRQ_ACT_HIGH ),
.AxiAddrWidth ( AXI_ADDR_WIDTH ),
.AxiDataWidth ( AXI_DATA_WIDTH ),
.req_lite_t ( req_lite_t ),
.resp_lite_t ( resp_lite_t )
) i_axi_lite_mailbox (
.clk_i, // Clock
.rst_ni, // Asynchronous reset active low
.test_i, // Testmode enable
// slave ports [1:0]
.slv_reqs_i ( slv_reqs ),
.slv_resps_o ( slv_resps ),
.irq_o, // interrupt output for each port
.base_addr_i // base address for each port
);
// pragma translate_off
`ifndef VERILATOR
initial begin
assert (slv[0].AXI_ADDR_WIDTH == AXI_ADDR_WIDTH)
else $fatal(1, "LITE Interface [0] AXI_ADDR_WIDTH missmatch!");
assert (slv[1].AXI_ADDR_WIDTH == AXI_ADDR_WIDTH)
else $fatal(1, "LITE Interface [1] AXI_ADDR_WIDTH missmatch!");
assert (slv[0].AXI_DATA_WIDTH == AXI_DATA_WIDTH)
else $fatal(1, "LITE Interface [0] AXI_DATA_WIDTH missmatch!");
assert (slv[1].AXI_DATA_WIDTH == AXI_DATA_WIDTH)
else $fatal(1, "LITE Interface [1] AXI_DATA_WIDTH missmatch!");
end
`endif
// pragma translate_on
endmodule