forked from pulp-platform/axi
-
Notifications
You must be signed in to change notification settings - Fork 0
/
axi_dw_upsizer.sv
655 lines (553 loc) · 22.7 KB
/
axi_dw_upsizer.sv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
// Copyright 2020 ETH Zurich and University of Bologna.
// Copyright and related rights are licensed under the Solderpad Hardware
// License, Version 0.51 (the "License"); you may not use this file except in
// compliance with the License. You may obtain a copy of the License at
// http://solderpad.org/licenses/SHL-0.51. Unless required by applicable law
// or agreed to in writing, software, hardware and materials distributed under
// this License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR
// CONDITIONS OF ANY KIND, either express or implied. See the License for the
// specific language governing permissions and limitations under the License.
// Author: Matheus Cavalcante <[email protected]>
// Description:
// Data width upsize conversion.
// Connects a narrow master to a wider slave.
// NOTE: The upsizer does not support WRAP bursts, and will answer with SLVERR
// upon receiving a burst of such type.
module axi_dw_upsizer #(
parameter int unsigned AxiMaxReads = 1 , // Number of outstanding reads
parameter int unsigned AxiSlvPortDataWidth = 8 , // Data width of the slv port
parameter int unsigned AxiMstPortDataWidth = 8 , // Data width of the mst port
parameter int unsigned AxiAddrWidth = 1 , // Address width
parameter int unsigned AxiIdWidth = 1 , // ID width
parameter type aw_chan_t = logic, // AW Channel Type
parameter type mst_w_chan_t = logic, // W Channel Type for mst port
parameter type slv_w_chan_t = logic, // W Channel Type for slv port
parameter type b_chan_t = logic, // B Channel Type
parameter type ar_chan_t = logic, // AR Channel Type
parameter type mst_r_chan_t = logic, // R Channel Type for mst port
parameter type slv_r_chan_t = logic, // R Channel Type for slv port
parameter type axi_mst_req_t = logic, // AXI Request Type for mst ports
parameter type axi_mst_resp_t = logic, // AXI Response Type for mst ports
parameter type axi_slv_req_t = logic, // AXI Request Type for slv ports
parameter type axi_slv_resp_t = logic // AXI Response Type for slv ports
) (
input logic clk_i,
input logic rst_ni,
// Slave interface
input axi_slv_req_t slv_req_i,
output axi_slv_resp_t slv_resp_o,
// Master interface
output axi_mst_req_t mst_req_o,
input axi_mst_resp_t mst_resp_i
);
/*****************
* DEFINITIONS *
*****************/
import axi_pkg::aligned_addr;
import axi_pkg::beat_addr ;
import axi_pkg::modifiable ;
// Type used to index which adapter is handling each outstanding transaction.
localparam TranIdWidth = AxiMaxReads > 1 ? $clog2(AxiMaxReads) : 1;
typedef logic [TranIdWidth-1:0] tran_id_t;
// Data width
localparam AxiSlvPortStrbWidth = AxiSlvPortDataWidth / 8;
localparam AxiMstPortStrbWidth = AxiMstPortDataWidth / 8;
localparam AxiSlvPortMaxSize = $clog2(AxiSlvPortStrbWidth);
localparam AxiMstPortMaxSize = $clog2(AxiMstPortStrbWidth);
// Address width
typedef logic [AxiAddrWidth-1:0] addr_t;
// ID width
typedef logic [AxiIdWidth-1:0] id_t;
// Length of burst after upsizing
typedef logic [$clog2(AxiMstPortStrbWidth/AxiSlvPortStrbWidth) + 7:0] burst_len_t;
// Internal AXI bus
axi_mst_req_t mst_req;
axi_mst_resp_t mst_resp;
/**************
* ARBITERS *
**************/
// R
slv_r_chan_t [AxiMaxReads-1:0] slv_r_tran;
logic [AxiMaxReads-1:0] slv_r_valid_tran;
logic [AxiMaxReads-1:0] slv_r_ready_tran;
rr_arb_tree #(
.NumIn (AxiMaxReads ),
.DataType (slv_r_chan_t),
.AxiVldRdy(1'b1 ),
.ExtPrio (1'b0 ),
.LockIn (1'b1 )
) i_slv_r_arb (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.flush_i(1'b0 ),
.rr_i ('0 ),
.req_i (slv_r_valid_tran ),
.gnt_o (slv_r_ready_tran ),
.data_i (slv_r_tran ),
.gnt_i (slv_req_i.r_ready ),
.req_o (slv_resp_o.r_valid),
.data_o (slv_resp_o.r ),
.idx_o (/* Unused */ )
);
logic [AxiMaxReads-1:0] mst_r_ready_tran;
assign mst_req.r_ready = |mst_r_ready_tran;
// AR
id_t arb_slv_ar_id;
logic arb_slv_ar_req;
logic arb_slv_ar_gnt;
logic [AxiMaxReads-1:0] arb_slv_ar_gnt_tran;
// Multiplex AR slave between AR and AW for the injection of atomic operations with an R response.
logic inject_aw_into_ar;
logic inject_aw_into_ar_req;
logic inject_aw_into_ar_gnt;
assign arb_slv_ar_gnt = |arb_slv_ar_gnt_tran;
rr_arb_tree #(
.NumIn (2 ),
.DataWidth (AxiIdWidth),
.ExtPrio (1'b0 ),
.AxiVldRdy (1'b1 ),
.LockIn (1'b0 )
) i_slv_ar_arb (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.flush_i(1'b0 ),
.rr_i ('0 ),
.req_i ({inject_aw_into_ar_req, slv_req_i.ar_valid} ),
.gnt_o ({inject_aw_into_ar_gnt, slv_resp_o.ar_ready}),
.data_i ({slv_req_i.aw.id, slv_req_i.ar.id} ),
.req_o (arb_slv_ar_req ),
.gnt_i (arb_slv_ar_gnt ),
.data_o (arb_slv_ar_id ),
.idx_o (inject_aw_into_ar )
);
ar_chan_t [AxiMaxReads-1:0] mst_ar_tran;
id_t [AxiMaxReads-1:0] mst_ar_id;
logic [AxiMaxReads-1:0] mst_ar_valid_tran;
logic [AxiMaxReads-1:0] mst_ar_ready_tran;
tran_id_t mst_req_idx;
rr_arb_tree #(
.NumIn (AxiMaxReads),
.DataType (ar_chan_t ),
.AxiVldRdy(1'b1 ),
.ExtPrio (1'b0 ),
.LockIn (1'b1 )
) i_mst_ar_arb (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.flush_i(1'b0 ),
.rr_i ('0 ),
.req_i (mst_ar_valid_tran),
.gnt_o (mst_ar_ready_tran),
.data_i (mst_ar_tran ),
.gnt_i (mst_resp.ar_ready),
.req_o (mst_req.ar_valid ),
.data_o (mst_req.ar ),
.idx_o (mst_req_idx )
);
/*****************
* ERROR SLAVE *
*****************/
axi_mst_req_t axi_err_req;
axi_mst_resp_t axi_err_resp;
axi_err_slv #(
.AxiIdWidth(AxiIdWidth ),
.Resp (axi_pkg::RESP_SLVERR),
.req_t (axi_mst_req_t ),
.resp_t (axi_mst_resp_t )
) i_axi_err_slv (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.test_i (1'b0 ),
.slv_req_i (axi_err_req ),
.slv_resp_o(axi_err_resp)
);
/***********
* DEMUX *
***********/
// Requests can be sent either to the error slave,
// or to the DWC's master port.
logic [AxiMaxReads-1:0] mst_req_ar_err;
logic mst_req_aw_err;
axi_demux #(
.AxiIdWidth (AxiIdWidth ),
.AxiLookBits(AxiIdWidth ),
.aw_chan_t (aw_chan_t ),
.w_chan_t (mst_w_chan_t ),
.b_chan_t (b_chan_t ),
.ar_chan_t (ar_chan_t ),
.r_chan_t (mst_r_chan_t ),
.req_t (axi_mst_req_t ),
.resp_t (axi_mst_resp_t),
.NoMstPorts (2 ),
.MaxTrans (AxiMaxReads ),
.SpillAw (1'b1 ) // Required to break dependency between AW and W channels
) i_axi_demux (
.clk_i (clk_i ),
.rst_ni (rst_ni ),
.test_i (1'b0 ),
.mst_reqs_o ({axi_err_req, mst_req_o} ),
.mst_resps_i ({axi_err_resp, mst_resp_i} ),
.slv_ar_select_i(mst_req_ar_err[mst_req_idx]),
.slv_aw_select_i(mst_req_aw_err ),
.slv_req_i (mst_req ),
.slv_resp_o (mst_resp )
);
/**********
* READ *
**********/
typedef enum logic [1:0] {
R_IDLE ,
R_PASSTHROUGH,
R_INCR_UPSIZE
} r_state_e;
// Decide which upsizer will handle the incoming AXI transaction
logic [AxiMaxReads-1:0] idle_read_upsizer;
tran_id_t idx_ar_upsizer ;
// Find an idle upsizer to handle this transaction
tran_id_t idx_idle_upsizer;
lzc #(
.WIDTH(AxiMaxReads)
) i_idle_lzc (
.in_i (idle_read_upsizer),
.cnt_o (idx_idle_upsizer ),
.empty_o(/* Unused */ )
);
// Is there already another upsizer handling a transaction with the same id
logic [AxiMaxReads-1:0] id_clash_upsizer;
tran_id_t idx_id_clash_upsizer ;
for (genvar t = 0; t < AxiMaxReads; t++) begin: gen_id_clash
assign id_clash_upsizer[t] = arb_slv_ar_id == mst_ar_id[t] && !idle_read_upsizer[t];
end
onehot_to_bin #(
.ONEHOT_WIDTH(AxiMaxReads)
) i_id_clash_onehot_to_bin (
.onehot(id_clash_upsizer ),
.bin (idx_id_clash_upsizer)
);
// Choose an idle upsizer, unless there is an id clash
assign idx_ar_upsizer = (|id_clash_upsizer) ? idx_id_clash_upsizer : idx_idle_upsizer;
// This logic is used to resolve which upsizer is handling
// each outstanding read transaction
logic r_upsizer_valid;
tran_id_t idx_r_upsizer;
logic [AxiMaxReads-1:0] rid_upsizer_match;
// Is there a upsizer handling this transaction?
assign r_upsizer_valid = |rid_upsizer_match;
for (genvar t = 0; t < AxiMaxReads; t++) begin: gen_rid_match
assign rid_upsizer_match[t] = (mst_resp.r.id == mst_ar_id[t]) && !idle_read_upsizer[t];
end
onehot_to_bin #(
.ONEHOT_WIDTH(AxiMaxReads)
) i_rid_upsizer_lzc (
.onehot(rid_upsizer_match),
.bin (idx_r_upsizer )
);
typedef struct packed {
ar_chan_t ar ;
logic ar_valid ;
logic ar_throw_error ;
axi_pkg::len_t burst_len ;
axi_pkg::size_t orig_ar_size;
} r_req_t;
for (genvar t = 0; unsigned'(t) < AxiMaxReads; t++) begin: gen_read_upsizer
r_state_e r_state_d, r_state_q;
r_req_t r_req_d , r_req_q ;
// Are we idle?
assign idle_read_upsizer[t] = (r_state_q == R_IDLE);
always_comb begin
// Maintain state
r_state_d = r_state_q;
r_req_d = r_req_q ;
// AR Channel
mst_ar_tran[t] = r_req_q.ar ;
mst_ar_id[t] = r_req_q.ar.id ;
mst_ar_valid_tran[t] = r_req_q.ar_valid;
// Throw an error
mst_req_ar_err[t] = r_req_q.ar_throw_error;
// R Channel
// No latency
slv_r_tran[t] = '0 ;
slv_r_tran[t].id = mst_resp.r.id ;
slv_r_tran[t].resp = mst_resp.r.resp;
slv_r_tran[t].user = mst_resp.r.user;
arb_slv_ar_gnt_tran[t] = 1'b0;
mst_r_ready_tran[t] = 1'b0;
slv_r_valid_tran[t] = 1'b0;
// Got a grant on the AR channel
if (mst_ar_valid_tran[t] && mst_ar_ready_tran[t]) begin
r_req_d.ar_valid = 1'b0;
r_req_d.ar_throw_error = 1'b0;
end
case (r_state_q)
R_IDLE : begin
// Reset channels
r_req_d.ar = '0;
// New read request
if (arb_slv_ar_req && (idx_ar_upsizer == t)) begin
arb_slv_ar_gnt_tran[t] = 1'b1;
// Default state
r_state_d = R_PASSTHROUGH;
// Save beat
r_req_d.ar = slv_req_i.ar ;
r_req_d.ar_valid = 1'b1 ;
r_req_d.burst_len = slv_req_i.ar.len ;
r_req_d.orig_ar_size = slv_req_i.ar.size;
if (inject_aw_into_ar) begin
r_req_d.ar.id = slv_req_i.aw.id ;
r_req_d.ar.addr = slv_req_i.aw.addr ;
r_req_d.ar.size = slv_req_i.aw.size ;
r_req_d.ar.burst = slv_req_i.aw.burst ;
r_req_d.ar.len = slv_req_i.aw.len ;
r_req_d.ar.lock = slv_req_i.aw.lock ;
r_req_d.ar.cache = slv_req_i.aw.cache ;
r_req_d.ar.prot = slv_req_i.aw.prot ;
r_req_d.ar.qos = slv_req_i.aw.qos ;
r_req_d.ar.region = slv_req_i.aw.region;
r_req_d.ar.user = slv_req_i.aw.user ;
r_req_d.ar_valid = 1'b0 ; // Injected "AR"s from AW are not valid.
r_req_d.burst_len = slv_req_i.aw.len ;
r_req_d.orig_ar_size = slv_req_i.aw.size ;
end
case (r_req_d.ar.burst)
axi_pkg::BURST_INCR: begin
// Modifiable transaction
if (modifiable(r_req_d.ar.cache)) begin
// No need to upsize single-beat transactions.
if (r_req_d.ar.len != '0) begin
// Evaluate output burst length
automatic addr_t start_addr = aligned_addr(r_req_d.ar.addr, AxiMstPortMaxSize);
automatic addr_t end_addr = aligned_addr(beat_addr(r_req_d.ar.addr,
r_req_d.orig_ar_size, r_req_d.burst_len, r_req_d.ar.burst,
r_req_d.burst_len), AxiMstPortMaxSize);
r_req_d.ar.len = (end_addr - start_addr) >> AxiMstPortMaxSize;
r_req_d.ar.size = AxiMstPortMaxSize ;
r_state_d = R_INCR_UPSIZE ;
end
end
end
axi_pkg::BURST_FIXED: begin
// Passes through the upsizer without any changes
r_state_d = R_PASSTHROUGH;
end
axi_pkg::BURST_WRAP: begin
// The DW converter does not support this kind of burst ...
r_state_d = R_PASSTHROUGH;
r_req_d.ar_throw_error = 1'b1 ;
// ... but might if this is a single-beat transaction
if (r_req_d.ar.len == '0)
r_req_d.ar_throw_error = 1'b0;
end
endcase
end
end
R_PASSTHROUGH, R_INCR_UPSIZE: begin
// Request was accepted
if (!r_req_q.ar_valid)
if (mst_resp.r_valid && (idx_r_upsizer == t) && r_upsizer_valid) begin
automatic addr_t mst_port_offset = r_req_q.ar.addr[(AxiMstPortStrbWidth == 1 ? 1 : $clog2(AxiMstPortStrbWidth)) - 1:0];
automatic addr_t slv_port_offset = r_req_q.ar.addr[(AxiSlvPortStrbWidth == 1 ? 1 : $clog2(AxiSlvPortStrbWidth)) - 1:0];
// Valid output
slv_r_valid_tran[t] = 1'b1 ;
slv_r_tran[t].last = mst_resp.r.last && (r_req_q.burst_len == 0);
// Lane steering
for (int b = 0; b < AxiMstPortStrbWidth; b++) begin
if ((b >= mst_port_offset) &&
(b - mst_port_offset < (1 << r_req_q.orig_ar_size)) &&
(b + slv_port_offset - mst_port_offset < AxiSlvPortStrbWidth)) begin
slv_r_tran[t].data[8*(b + slv_port_offset - mst_port_offset) +: 8] = mst_resp.r.data[8*b +: 8];
end
end
// Acknowledgment
if (slv_r_ready_tran[t]) begin
r_req_d.burst_len = r_req_q.burst_len - 1;
case (r_req_q.ar.burst)
axi_pkg::BURST_INCR: begin
r_req_d.ar.addr = aligned_addr(r_req_q.ar.addr, r_req_q.orig_ar_size) + (1 << r_req_q.orig_ar_size);
end
axi_pkg::BURST_FIXED: begin
r_req_d.ar.addr = r_req_q.ar.addr;
end
endcase
case (r_state_q)
R_PASSTHROUGH:
mst_r_ready_tran[t] = 1'b1;
R_INCR_UPSIZE:
if (r_req_q.burst_len == 0 || (aligned_addr(r_req_d.ar.addr, AxiMstPortMaxSize) != aligned_addr(r_req_q.ar.addr, AxiMstPortMaxSize)))
mst_r_ready_tran[t] = 1'b1;
endcase
if (r_req_q.burst_len == '0)
r_state_d = R_IDLE;
end
end
end
endcase
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
r_state_q <= R_IDLE;
r_req_q <= '0 ;
end else begin
r_state_q <= r_state_d;
r_req_q <= r_req_d ;
end
end
end : gen_read_upsizer
/***********
* WRITE *
***********/
typedef enum logic [1:0] {
W_IDLE ,
W_PASSTHROUGH,
W_INCR_UPSIZE
} w_state_e;
typedef struct packed {
aw_chan_t aw ;
logic aw_valid ;
logic aw_throw_error ;
mst_w_chan_t w ;
logic w_valid ;
axi_pkg::len_t burst_len ;
axi_pkg::size_t orig_aw_size;
} w_req_t;
w_state_e w_state_d, w_state_q;
w_req_t w_req_d , w_req_q ;
always_comb begin
inject_aw_into_ar_req = 1'b0;
// Maintain state
w_state_d = w_state_q;
w_req_d = w_req_q ;
// AW Channel
mst_req.aw = w_req_q.aw ;
mst_req.aw_valid = w_req_q.aw_valid;
slv_resp_o.aw_ready = '0 ;
// Throw an error.
mst_req_aw_err = w_req_q.aw_throw_error;
// W Channel
mst_req.w = w_req_q.w ;
mst_req.w_valid = w_req_q.w_valid;
slv_resp_o.w_ready = '0 ;
// B Channel (No latency)
slv_resp_o.b = mst_resp.b ;
slv_resp_o.b_valid = mst_resp.b_valid ;
mst_req.b_ready = slv_req_i.b_ready;
// Got a grant on the AW channel
if (mst_req.aw_valid && mst_resp.aw_ready) begin
w_req_d.aw_valid = 1'b0;
w_req_d.aw_throw_error = 1'b0;
end
case (w_state_q)
W_PASSTHROUGH, W_INCR_UPSIZE: begin
// Got a grant on the W channel
if (mst_req.w_valid && mst_resp.w_ready) begin
w_req_d.w = '0 ;
w_req_d.w_valid = 1'b0;
end
// Request was accepted
if (!w_req_q.aw_valid) begin
// Ready if downstream interface is idle, or if it is ready
slv_resp_o.w_ready = ~mst_req.w_valid || mst_resp.w_ready;
if (slv_req_i.w_valid && slv_resp_o.w_ready) begin
automatic addr_t mst_port_offset = w_req_q.aw.addr[(AxiMstPortStrbWidth == 1 ? 1 : $clog2(AxiMstPortStrbWidth)) - 1:0];
automatic addr_t slv_port_offset = w_req_q.aw.addr[(AxiSlvPortStrbWidth == 1 ? 1 : $clog2(AxiSlvPortStrbWidth)) - 1:0];
// Serialization
for (int b = 0; b < AxiMstPortStrbWidth; b++)
if ((b >= mst_port_offset) &&
(b - mst_port_offset < (1 << w_req_q.orig_aw_size)) &&
(b + slv_port_offset - mst_port_offset < AxiSlvPortStrbWidth)) begin
w_req_d.w.data[8*b +: 8] = slv_req_i.w.data[8*(b + slv_port_offset - mst_port_offset) +: 8];
w_req_d.w.strb[b] = slv_req_i.w.strb[b + slv_port_offset - mst_port_offset] ;
end
w_req_d.burst_len = w_req_q.burst_len - 1 ;
w_req_d.w.last = (w_req_q.burst_len == 0) ;
w_req_d.w.user = slv_req_i.w.user ;
case (w_req_q.aw.burst)
axi_pkg::BURST_INCR: begin
w_req_d.aw.addr = aligned_addr(w_req_q.aw.addr, w_req_q.orig_aw_size) + (1 << w_req_q.orig_aw_size);
end
axi_pkg::BURST_FIXED: begin
w_req_d.aw.addr = w_req_q.aw.addr;
end
endcase
case (w_state_q)
W_PASSTHROUGH:
// Forward data as soon as we can
w_req_d.w_valid = 1'b1;
W_INCR_UPSIZE:
// Forward when the burst is finished, or after filling up a word
if (w_req_q.burst_len == 0 || (aligned_addr(w_req_d.aw.addr, AxiMstPortMaxSize) != aligned_addr(w_req_q.aw.addr, AxiMstPortMaxSize)))
w_req_d.w_valid = 1'b1;
endcase
end
end
if (mst_req.w_valid && mst_resp.w_ready)
if (w_req_q.burst_len == '1) begin
slv_resp_o.w_ready = 1'b0 ;
w_state_d = W_IDLE;
end
end
endcase
// Can start a new request as soon as w_state_d is W_IDLE
if (w_state_d == W_IDLE) begin
// Reset channels
w_req_d.aw = '0 ;
w_req_d.aw_valid = 1'b0;
w_req_d.aw_throw_error = 1'b0;
w_req_d.w = '0 ;
w_req_d.w_valid = 1'b0;
if (slv_req_i.aw_valid && slv_req_i.aw.atop[5]) begin // ATOP with an R response
inject_aw_into_ar_req = 1'b1 ;
slv_resp_o.aw_ready = inject_aw_into_ar_gnt;
end else begin // Regular AW
slv_resp_o.aw_ready = 1'b1;
end
// New write request
if (slv_req_i.aw_valid & slv_resp_o.aw_ready) begin
// Default state
w_state_d = W_PASSTHROUGH;
// Save beat
w_req_d.aw = slv_req_i.aw;
w_req_d.aw_valid = 1'b1 ;
w_req_d.burst_len = slv_req_i.aw.len ;
w_req_d.orig_aw_size = slv_req_i.aw.size;
case (slv_req_i.aw.burst)
axi_pkg::BURST_INCR: begin
// Modifiable transaction
if (modifiable(slv_req_i.aw.cache))
// No need to upsize single-beat transactions.
if (slv_req_i.aw.len != '0) begin
// Evaluate output burst length
automatic addr_t start_addr = aligned_addr(slv_req_i.aw.addr, AxiMstPortMaxSize);
automatic addr_t end_addr = aligned_addr(beat_addr(slv_req_i.aw.addr,
slv_req_i.aw.size, slv_req_i.aw.len, slv_req_i.aw.burst, slv_req_i.aw.len),
AxiMstPortMaxSize);
w_req_d.aw.len = (end_addr - start_addr) >> AxiMstPortMaxSize;
w_req_d.aw.size = AxiMstPortMaxSize ;
w_state_d = W_INCR_UPSIZE ;
end
end
axi_pkg::BURST_FIXED: begin
// Passes through the upsizer without any changes
w_state_d = W_PASSTHROUGH;
end
axi_pkg::BURST_WRAP: begin
// The DW converter does not support this kind of burst ...
w_state_d = W_PASSTHROUGH;
w_req_d.aw_throw_error = 1'b1 ;
// ... but might if this is a single-beat transaction
if (slv_req_i.aw.len == '0)
w_req_d.aw_throw_error = 1'b0;
end
endcase
end
end
end
always_ff @(posedge clk_i or negedge rst_ni) begin
if (!rst_ni) begin
w_state_q <= W_IDLE;
w_req_q <= '0 ;
end else begin
w_state_q <= w_state_d;
w_req_q <= w_req_d ;
end
end
endmodule : axi_dw_upsizer