Skip to content

Latest commit

 

History

History
209 lines (201 loc) · 27.1 KB

File metadata and controls

209 lines (201 loc) · 27.1 KB

Awesome Continual-Lifelong-Incremental learning

Survey

  • Online Continual Learning in Image Classification: An Empirical Survey (arXiv 2020) [paper] [code]
  • Continual Lifelong Learning in Natural Language Processing: A Survey (COLING 2020) [paper]
  • Class-incremental learning: survey and performance evaluation (arXiv 2020) [paper] [code]
  • A Comprehensive Study of Class Incremental Learning Algorithms for Visual Tasks (Neural Networks) [paper] [code]
  • A continual learning survey: Defying forgetting in classification tasks (TPAMI 2021) [paper] [arxiv]
  • Continual Lifelong Learning with Neural Networks: A Review (Neural Networks) [paper]

Papers

2021

  • IIRC: Incremental Implicitly-Refined Classification (CVPR, 2021) [paper]
  • Self-Promoted Prototype Refinement for Few-Shot Class-Incremental Learning (CVPR, 2021)
  • Prototype Augmentation and Self-Supervision for Incremental Learning (CVPR, 2021) [paper]
  • SceneGraphFusion: Incremental 3D Scene Graph Prediction From RGB-D Sequences (CVPR, 2021) [paper]
  • Continual Adaptation of Visual Representations via Domain Randomization and Meta-Learning (CVPR, 2021) [paper]
  • Image De-Raining via Continual Learning (CVPR, 2021)
  • ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for Semi-Supervised Continual Learning (CVPR, 2021) [paper]
  • Layerwise Optimization by Gradient Decomposition for Continual Learning (CVPR, 2021)
  • Few-Shot Incremental Learning With Continually Evolved Classifiers (CVPR, 2021) [paper]
  • Continual Learning via Bit-Level Information Preserving (CVPR, 2021) [paper]
  • Learning the Superpixel in a Non-Iterative and Lifelong Manner (CVPR, 2021) [paper]
  • Hyper-LifelongGAN: Scalable Lifelong Learning for Image Conditioned Generation (CVPR, 2021) [paper]
  • Lifelong Person Re-Identification via Adaptive Knowledge Accumulation (CVPR, 2021) [paper]
  • Incremental Learning via Rate Reduction (CVPR, 2021) [paper]
  • Incremental Few-Shot Instance Segmentation (CVPR, 2021)
  • On Learning the Geodesic Path for Incremental Learning (CVPR, 2021) [paper]
  • Adaptive Aggregation Networks for Class-Incremental Learning (CVPR, 2021) [paper]
  • Efficient Feature Transformations for Discriminative and Generative Continual Learning (CVPR, 2021) [paper]
  • Rectification-based Knowledge Retention for Continual Learning (CVPR, 2021) [paper]
  • DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR, 2021) [paper]
  • Rainbow Memory: Continual Learning with a Memory of Diverse Samples (CVPR, 2021) [paper]
  • Training Networks in Null Space of Feature Covariance for Continual Learning (CVPR, 2021) [paper]
  • Semantic-aware Knowledge Distillation for Few-Shot Class-Incremental Learning (CVPR, 2021) [paper]
  • PLOP: Learning without Forgetting for Continual Semantic Segmentation (CVPR, 2021) [paper]
  • Continual Semantic Segmentation via Repulsion-Attraction of Sparse and Disentangled Latent Representations (CVPR, 2021) [paper]
  • Gradient Projection Memory for Continual Learning (ICLR, 2021) [paper]
  • Graph-Based Continual Learning (ICLR, 2021) [paper]
  • Wandering within a world: Online contextualized few-shot learning (ICLR, 2021) [paper]
  • EEC: Learning to Encode and Regenerate Images for Continual Learning (ICLR, 2021) [paper]
  • Continual learning in recurrent neural networks (ICLR, 2021) [paper]
  • Linear Mode Connectivity in Multitask and Continual Learning (ICLR, 2021) [paper]
  • Contextual Transformation Networks for Online Continual Learning (ICLR, 2021) [paper]
  • Remembering for the Right Reasons: Explanations Reduce Catastrophic Forgetting (ICLR, 2021) [paper]
  • Long Live the Lottery: The Existence of Winning Tickets in Lifelong Learning (ICLR, 2021) [paper]
  • Generalized Variational Continual Learning (ICLR, 2021) [paper]
  • CPR: Classifier-Projection Regularization for Continual Learning (ICLR, 2021) [paper]
  • Incremental few-shot learning via vector quantization in deep embedded space (ICLR, 2021) [paper]
  • Learning Structural Edits via Incremental Tree Transformations (ICLR, 2021) [paper]
  • Reset-Free Lifelong Learning with Skill-Space Planning (ICLR, 2021) [paper]
  • Lifelong Learning of Compositional Structures (ICLR, 2021) [paper]
  • Lifelong Zero-Shot Learning(IJCAI, 2021) [paper]
  • Online Class-Incremental Continual Learning with Adversarial Shapley Value(AAAI, 2021) [paper] [code]
  • Lifelong and Continual Learning Dialogue Systems: Learning during Conversation(AAAI, 2021) [paper]
  • Continual learning for named entity recognition(AAAI, 2021) [paper]
  • Using Hindsight to Anchor Past Knowledge in Continual Learning(AAAI, 2021) [paper]
  • Curriculum-Meta Learning for Order-Robust Continual Relation Extraction(AAAI, 2021) [paper]
  • Continual Learning by Using Information of Each Class Holistically(AAAI, 2021) [paper]
  • Gradient Regularized Contrastive Learning for Continual Domain Adaptation(AAAI, 2021) [paper]
  • Unsupervised Model Adaptation for Continual Semantic Segmentation(AAAI, 2021) [paper]
  • A Continual Learning Framework for Uncertainty-Aware Interactive Image Segmentation(AAAI, 2021) [paper]
  • Do Not Forget to Attend to Uncertainty While Mitigating Catastrophic Forgetting(WACV, 2021) [paper]

2020

  • Continual Learning for Natural Language Generation in Task-oriented Dialog Systems(EMNLP, 2020) [paper]
  • Distill and Replay for Continual Language Learning(COLING, 2020) [paper]
  • Continual Learning of a Mixed Sequence of Similar and Dissimilar Tasks (NeurIPS2020) [paper] [code]
  • Meta-Consolidation for Continual Learning (NeurIPS2020) [paper]
  • Understanding the Role of Training Regimes in Continual Learning (NeurIPS2020) [paper]
  • Continual Learning with Node-Importance based Adaptive Group Sparse Regularization (NeurIPS2020) [paper]
  • Online Fast Adaptation and Knowledge Accumulation (OSAKA): a New Approach to Continual Learning (NeurIPS2020) [paper]
  • Coresets via Bilevel Optimization for Continual Learning and Streaming (NeurIPS2020) [paper]
  • RATT: Recurrent Attention to Transient Tasks for Continual Image Captioning (NeurIPS2020) [paper]
  • Continual Deep Learning by Functional Regularisation of Memorable Past (NeurIPS2020) [paper]
  • Dark Experience for General Continual Learning: a Strong, Simple Baseline (NeurIPS2020) [paper] [code]
  • GAN Memory with No Forgetting (NeurIPS2020) [paper]
  • Calibrating CNNs for Lifelong Learning (NeurIPS2020) [paper]
  • ADER: Adaptively Distilled Exemplar Replay Towards Continual Learning for Session-based Recommendation(RecSys, 2020) [paper]
  • Initial Classifier Weights Replay for Memoryless Class Incremental Learning (BMVC2020) [paper]
  • Adversarial Continual Learning (ECCV2020) [paper] [code]
  • REMIND Your Neural Network to Prevent Catastrophic Forgetting (ECCV2020) [paper] [code]
  • Incremental Meta-Learning via Indirect Discriminant Alignment (ECCV2020) [paper]
  • Memory-Efficient Incremental Learning Through Feature Adaptation (ECCV2020) [paper]
  • PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning (ECCV2020) [paper] [code]
  • Reparameterizing Convolutions for Incremental Multi-Task Learning Without Task Interference (ECCV2020) [paper]
  • Learning latent representions across multiple data domains using Lifelong VAEGAN (ECCV2020) [paper]
  • Online Continual Learning under Extreme Memory Constraints (ECCV2020) [paper]
  • Class-Incremental Domain Adaptation (ECCV2020) [paper]
  • More Classifiers, Less Forgetting: A Generic Multi-classifier Paradigm for Incremental Learning (ECCV2020) [paper]
  • Piggyback GAN: Efficient Lifelong Learning for Image Conditioned Generation (ECCV2020) [paper]
  • GDumb: A Simple Approach that Questions Our Progress in Continual Learning (ECCV2020) [paper]
  • Imbalanced Continual Learning with Partitioning Reservoir Sampling (ECCV2020) [paper]
  • Topology-Preserving Class-Incremental Learning (ECCV2020) [paper]
  • GraphSAIL: Graph Structure Aware Incremental Learning for Recommender Systems (CIKM2020) [paper]
  • OvA-INN: Continual Learning with Invertible Neural Networks (IJCNN2020) [paper]
  • XtarNet: Learning to Extract Task-Adaptive Representation for Incremental Few-Shot Learning (ICLM2020) [paper]
  • Optimal Continual Learning has Perfect Memory and is NP-HARD (ICML2020) [paper]
  • Neural Topic Modeling with Continual Lifelong Learning (ICML2020) [paper]
  • Continual Learning with Knowledge Transfer for Sentiment Classification (ECML-PKDD2020) [paper] [code]
  • Semantic Drift Compensation for Class-Incremental Learning (CVPR2020) [paper] [code]
  • Few-Shot Class-Incremental Learning (CVPR2020) [paper]
  • Modeling the Background for Incremental Learning in Semantic Segmentation (CVPR2020) [paper]
  • Incremental Few-Shot Object Detection (CVPR2020) [paper]
  • Incremental Learning In Online Scenario (CVPR2020) [paper]
  • Maintaining Discrimination and Fairness in Class Incremental Learning (CVPR2020) [paper]
  • Conditional Channel Gated Networks for Task-Aware Continual Learning (CVPR2020) [paper]
  • Continual Learning with Extended Kronecker-factored Approximate Curvature (CVPR2020) [paper]
  • iTAML : An Incremental Task-Agnostic Meta-learning Approach (CVPR2020) [paper] [code]
  • Mnemonics Training: Multi-Class Incremental Learning without Forgetting (CVPR2020) [paper] [code]
  • ScaIL: Classifier Weights Scaling for Class Incremental Learning (WACV2020) [paper]
  • Accepted papers(ICLR2020) [paper]
  • Brain-inspired replay for continual learning with artificial neural networks (Natrue Communications 2020) [paper] [code]

2019

  • Compacting, Picking and Growing for Unforgetting Continual Learning (NeurIPS2019)[paper][code]
  • Increasingly Packing Multiple Facial-Informatics Modules in A Unified Deep-Learning Model via Lifelong Learning (ICMR2019) [paper][code]
  • Towards Training Recurrent Neural Networks for Lifelong Learning (Neural Computation 2019) [paper]
  • Complementary Learning for Overcoming Catastrophic Forgetting Using Experience Replay (IJCAI2019) [paper]
  • IL2M: Class Incremental Learning With Dual Memory (ICCV2019) [paper]
  • Incremental Learning Using Conditional Adversarial Networks (ICCV2019) [paper]
  • Adaptive Deep Models for Incremental Learning: Considering Capacity Scalability and Sustainability (KDD2019) [paper]
  • Random Path Selection for Incremental Learning (NeurIPS2019) [paper]
  • Online Continual Learning with Maximal Interfered Retrieval (NeurIPS2019) [paper]
  • Overcoming Catastrophic Forgetting with Unlabeled Data in the Wild (ICCV2019) [paper]
  • Continual Learning by Asymmetric Loss Approximation with Single-Side Overestimation (ICCV2019) [paper]
  • Lifelong GAN: Continual Learning for Conditional Image Generation (ICCV2019) [paper]
  • Continual learning of context-dependent processing in neural networks (Nature Machine Intelligence 2019) [paper] [code]
  • Large Scale Incremental Learning (CVPR2019) [paper] [code]
  • Learning a Unified Classifier Incrementally via Rebalancing (CVPR2019) [paper] [code]
  • Learning Without Memorizing (CVPR2019) [paper]
  • Learning to Remember: A Synaptic Plasticity Driven Framework for Continual Learning (CVPR2019) [paper]
  • Task-Free Continual Learning (CVPR2019) [paper]
  • Learn to Grow: A Continual Structure Learning Framework for Overcoming Catastrophic Forgetting (ICML2019) [paper]
  • Efficient Lifelong Learning with A-GEM (ICLR2019) [paper] [code]
  • Learning to Learn without Forgetting By Maximizing Transfer and Minimizing Interference (ICLR2019) [paper] [code]
  • Overcoming Catastrophic Forgetting via Model Adaptation (ICLR2019) [paper]
  • A comprehensive, application-oriented study of catastrophic forgetting in DNNs (ICLR2019) [paper]

2018

  • Memory Replay GANs: learning to generate images from new categories without forgetting (NIPS2018) [paper] [code]
  • Reinforced Continual Learning (NIPS2018) [paper] [code]
  • Online Structured Laplace Approximations for Overcoming Catastrophic Forgetting (NIPS2018) [paper]
  • Rotate your Networks: Better Weight Consolidation and Less Catastrophic Forgetting (R-EWC) (ICPR2018) [paper] [code]
  • Exemplar-Supported Generative Reproduction for Class Incremental Learning (BMVC2018) [paper] [code]
  • End-to-End Incremental Learning (ECCV2018) [paper][code]
  • Riemannian Walk for Incremental Learning: Understanding Forgetting and Intransigence (ECCV2018)[paper]
  • Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights (ECCV2018) [paper] [code]
  • Memory Aware Synapses: Learning what (not) to forget (ECCV2018) [paper] [code]
  • Lifelong Learning via Progressive Distillation and Retrospection (ECCV2018) [paper]
  • PackNet: Adding Multiple Tasks to a Single Network by Iterative Pruning (CVPR2018) [paper] [code]
  • Overcoming Catastrophic Forgetting with Hard Attention to the Task (ICML2018) [paper] [code]
  • Lifelong Learning with Dynamically Expandable Networks (ICLR2018) [paper]
  • FearNet: Brain-Inspired Model for Incremental Learning (ICLR2018) [paper]

2017

  • Incremental Learning of Object Detectors Without Catastrophic Forgetting (ICCV2017) [paper]
  • Overcoming catastrophic forgetting in neural networks (EWC) (PNAS2017) [paper] [code] [code]
  • Continual Learning Through Synaptic Intelligence (ICML2017) [paper] [code]
  • Gradient Episodic Memory for Continual Learning (NIPS2017) [paper] [code]
  • iCaRL: Incremental Classifier and Representation Learning (CVPR2017) [paper] [code]
  • Continual Learning with Deep Generative Replay (NIPS2017) [paper] [code]
  • Overcoming Catastrophic Forgetting by Incremental Moment Matching (NIPS2017) [paper] [code]
  • Expert Gate: Lifelong Learning with a Network of Experts (CVPR2017) [paper]
  • Encoder Based Lifelong Learning (ICCV2017) [paper]

2016

  • Learning without forgetting (ECCV2016) [paper] [code]

ContinualAI wiki

Workshops

Challenges or Competitions

Acknowledgement

The content is mainly based on Awesome_Continual-Lifelong-Incremental_learning