Skip to content

Latest commit

 

History

History
187 lines (150 loc) · 9.63 KB

File metadata and controls

187 lines (150 loc) · 9.63 KB

Adaptive Graph Diffusion Networks

This is a pytorch implementation of the paper Adaptive Graph Diffusion Networks.

Environment

We conduct all experiments on a single Tesla V100 (16Gb) card. The maximum memory cost on certain datasets may be up to ~32Gb. We implement our methods with Deep Graph Library (DGL). Check requirements.txt for more associated python packages.

Reproduce

We offer associated shell scripts for reproducing our results. Remember to modify your own dataset root path in each directory. We also offer other common models and possible sampling methods in some directories (not fully evaluated).

Feel free to utilize and modify this repository, but remember to briefly introduce and cite this work:D

Method

(There exist some rendering mistakes when using \sum_{xxx}^{xxx} in latex scripts)

We propose Adaptive Graph Diffusion Networks (AGDNs) to extend receptive fields of common Message Passing Nueral Networks (MPNNs), without extra layers (feature transformations) or decoupling model architecture (resulting graph convolution restricted in the same space). Following the historical path of GNNs, that spectral GNNs have elegant analyzability but usually have poor scalability and performance, we generalize the graph diffusion to be more spatial. In detail, for an MPNN model (usually GAT in this repository), we replace the graph convolution operator in each layer with a generalized graph diffusion operator. The generalized graph diffusion operator is defined as follows:

$$\tilde{\boldsymbol H}^{(l,0)} = \boldsymbol H^{(l-1)}\boldsymbol W^{(l)},$$

$$\tilde{\boldsymbol H}^{(l,k)} = \overline{\boldsymbol A}\tilde{\boldsymbol H}^{(l,k-1)},$$

$${\boldsymbol H}^{(l)}=\sum^{K}_{k=0}{\boldsymbol \Theta}^{(k)}\otimes\tilde{\boldsymbol H}^{(l,k)}+\boldsymbol{H}^{(l-1)}\boldsymbol{W}^{(l),r},$$

where $\otimes$ denotes the element-wise matrix multiplication. We describe the above proceedures in a node viewpoint:

$$\tilde{\boldsymbol h}^{(l,0)}_i=\boldsymbol h^{(l-1)}_i\boldsymbol W^{(l)},$$

$$\tilde{\boldsymbol h}^{(l,k)}i=\sum{j\in \mathcal{N}i}\left(\overline{A}{ij}\tilde{\boldsymbol h}^{(l,k-1)}_j\right),$$

$$h^{(l)}{ic}=\left[\sum{k=0}^{K}\left(\theta_{ikc}\tilde{h}^{(l,k)}{ic}\right)+\sum{c'=1}^{d^{(l-1)}}\left(h^{(l-1)}{ic'}W^{(l),r}{c'c}\right)\right],$$

To obtain the possibly node-wise or channel-wise weighting coefficients $\theta_{ikc}$, we propose two mechanisms: Hop-wise Attention (HA) and Hop-wise Convolution (HC).

Hop-wise Attention (HA) is a GAT-like attention mechanism and utilizes a $2\times d$ query vector $\boldsymbol a_{hw}$ to induce node-wise weighting coefficients $\boldsymbol \Theta^{HA} \in \mathbb R^{N\times (K+1)}$:

$$\omega_{ik} = \left[\tilde{\boldsymbol h}^{(l,0)}{i}\left\lvert\right\rvert\tilde{\boldsymbol h}^{(l,k)}{i}\right]\cdot \boldsymbol a_{hw},$$

$${\theta}{ik}^{HA}=\frac {{\rm exp}\left({\sigma}\left(\omega{ik}\right)\right)}{\sum {k=0}^{K} {{\rm exp}\left({\sigma}\left(\omega{ik}\right)\right)}},$$

$$\theta^{HA}{ikc}=\theta^{HA}{ik},\forall i,k,c$$

Hop-wise Convolution (HC) directly defines a learnable channel-wise convolution kernel $\boldsymbol \Theta^{HC}\in \mathbb R^{(K+1)\times d}$:

$$\theta^{HC}{ikc}=\theta^{HC}{kc},\forall i,k,c$$

HA and HC are just examples, we expect more mechanisms from the community.

In addition, we utilize hop-wise Positional Embedding (PE) on some datasets to enhance hop-wise position information (PE may increase 1~2 Gb memory cost):

$$\tilde{\boldsymbol h}^{(l,k)} = \tilde{\boldsymbol h}^{(l,k)} + \boldsymbol p^{(l,k)}$$

Performance

ogbn-arxiv:

Model Test Accuracy (%) Validation Accuracy (%)
GCN 71.74±0.29 73.00±0.17
GraphSAGE 71.49±0.27 72.77±0.16
DeeperGCN 71.92±0.16 72.62±0.14
JKNet 72.19±0.21 73.35±0.07
DAGNN 72.09±0.25 72.90±0.11
GCNII 72.74±0.16
MAGNA 72.76±0.14
UniMP 73.11±0.20 74.50±0.15
GAT+BoT 73.910.12 75.16±0.08
RevGAT+BoT 74.02±0.18 75.01±0.10
AGDN+BoT 74.11±0.12 75.25±0.05
GAT+BoT+self-KD 74.16±0.08 75.14±0.04
RevGAT+BoT+self-KD 74.26±0.17 74.97±0.08
AGDN+BoT+self-KD 74.31±0.12 75.22±0.09
RevGAT+XRT+BoT 75.90±0.19 77.01±0.09
AGDN+XRT+BoT 76.18±0.16 77.24±0.06
RevGAT+XRT+BoT+self-KD 76.15±0.10 77.16±0.09
AGDN+XRT+BoT+self-KD 76.37±0.11 77.19±0.08

ogbn-proteins:

Model Test ROC-AUC (%) Validation ROC-AUC (%)
GCN 72.51±0.35 79.21±0.18
GraphSAGE 77.68±0.20 83.34±0.13
DeeperGCN 85.80±0.17 91.06±0.16
UniMP 86.42±0.08 91.75±0.06
GAT+BoT 87.65±0.08 92.80±0.08
RevGNN-deep 87.74±0.13 93.26±0.06
RevGNN-wide 88.24±0.15 94.50±0.08
AGDN 88.65±0.13 94.18±0.05

ogbn-products:

Model Test Accuracy (%) Validation Accuracy (%)
GCN 75.64±0.21 92.00±0.03
GraphSAGE 78.50±0.14 92.24±0.07
GraphSAINT 80.27±0.26
DeeperGCN 80.98±0.20 92.38±0.09
SIGN 80.52±0.16 92.99±0.04
UniMP 82.56±0.31 93.08±0.17
RevGNN-112 83.07±0.30 92.90±0.07
AGDN 83.34±0.27 92.29±0.10

Heterophily-prone datasets: Chameleon & Squirrel & Actor (Test Accuracy (%)):

Model Chameleon Squirrel Actor
GCN 62.72±2.09 47.26±0.34 29.98±1.18
GAT 62.19±3.78 51.80±1.04 28.17±1.19
APPNP 50.88±1.18 33.58±1.00 29.82±0.82
ChebyNet 59.98±1.54 40.18±0.55 35.85±1.05
GPR-GNN 67.96±2.55 49.52±5.00 30.78±0.61
JKNet 64.63±3.08 44.91±1.94 28.48±1.25
JacobiConv 73.09±1.35 56.70±1.92 30.37±0.93
GOAL 71.65±1.66 60.53±1.60 36.46±1.02
AGDN 73.53±1.45 61.37±1.93 37.37±1.38

ogbl-ppa:

Model Test Hits@100 (%) Validation Hits@100 (%)
DeepWalk 28.88±1.53 -
Matrix Factorization 32.29±0.94 32.28±4.28
Common Neighbor 27.65±0.00 28.23±0.00
Adamic Adar 32.45±0.00 32.68±0.00
Resource Allocation 49.33±0.00 47.22±0.00
GCN 18.67±1.32 18.45±1.40
GraphSAGE 16.55±2.40 17.24±2.64
SEAL 48.80±3.16 51.25±2.52
PLNLP 32.38±2.58 -
Ours (AGDN) 41.23±1.59 43.32±0.92

ogbl-ddi:

Model Test Hits@20 (%) Validation Hits@20 (%)
DeepWalk 22.46±2.90
Matrix Factorization 13.68±4.75 33.70±2.64
Common Neighbor 17.73±0.00 9.47±0.00
Adamic Adar 18.61±0.00 9.66±0.00
Resource Allocation 6.23±0.00 7.25±0.00
GCN 37.07±5.07 55.50±2.08
GraphSAGE 53.90±4.74 62.62±0.37
SEAL 30.56±3.86 28.49±2.69
PLNLP 90.88±3.13 82.42±2.53
Ours (AGDN) 95.38±0.94 89.43±2.81

ogbl-citation2:

Model Test MRR (%) Validation MRR (%)
Matrix Factorization 51.86±4.43 51.81±4.36
Common Neighbor 51.47±0.00 51.19±0.00
Adamic Adar 51.89±0.00 51.67±0.00
Resource Allocation 51.98±0.00 51.77±0.00
GCN 84.74±0.31 84.79±0.23
GraphSAGE 82.60±0.36 82.63±0.33
SEAL 87.67±0.32 87.57±0.31
PLNLP 84.92±0.29 84.90±0.31
Ours (AGDN) 85.49±0.29 85.56±0.33

Runtime and Parameters

ogbn-proteins (The inference runtime on another RTX 6000 (48Gb) card of RevGNN is not reported in its paper):

Model Training Runtime Inference Runtime Parameters
RevGNN-Deep 13.5d/2000epochs 20.03M
RevGNN-Wide 17.1d/2000epochs 68.47M
AGDN 0.14d/2000epochs 12s 8.61M

ogbl-ppa, ogbl-ddi, ogbl-citation2:

Dataset Model Training Runtime Inference Runtime Parameters
ogbl-ppa SEAL 20h/20epochs 4h 0.71M
ogbl-ppa AGDN 2.3h/40epochs 0.06h 36.90M
ogbl-ddi SEAL 0.07h/10epochs 0.1h 0.53M
ogbl-ddi AGDN 0.8h/2000epochs 0.3s 3.51M
ogbl-citation2 SEAL 7h/10epochs 28h 0.26M
ogbl-citation2 AGDN 2.5h/2000epochs 0.06h 0.31M

Extra tricks

For ogbn-arxiv: BoT, self-KD and GIANT-XRT.

For ogbn-ddi: AUC loss from PLNLP.

Reference

  1. BoT (Repository, Paper)
  2. Self-KD(Repository)
  3. GIANT-XRT(Repository, Paper)
  4. PLNLP(Repository, Paper)
  5. GraphSAINT(Repository, Paper)
  6. DeeperGCN (Repository, Paper)
  7. RevGNNs (Repository, Paper)
  8. UniMP (Repository, Paper)
  9. SEAL (Repository, Paper)