forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
dxtc.cu
786 lines (611 loc) · 22.3 KB
/
dxtc.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// Utilities and system includes
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
#include <helper_functions.h>
#include <helper_cuda.h>
#include <helper_math.h>
#include <float.h> // for FLT_MAX
#include "CudaMath.h"
#include "dds.h"
#include "permutations.h"
// Definitions
#define INPUT_IMAGE "teapot512_std.ppm"
#define REFERENCE_IMAGE "teapot512_ref.dds"
#define ERROR_THRESHOLD 0.02f
#define NUM_THREADS 64 // Number of threads per block.
#define __debugsync()
template <class T>
__device__ inline void swap(T &a, T &b) {
T tmp = a;
a = b;
b = tmp;
}
//__constant__ float3 kColorMetric = { 0.2126f, 0.7152f, 0.0722f };
__constant__ float3 kColorMetric = {1.0f, 1.0f, 1.0f};
////////////////////////////////////////////////////////////////////////////////
// Sort colors
////////////////////////////////////////////////////////////////////////////////
__device__ void sortColors(const float *values, int *ranks,
cg::thread_group tile) {
const int tid = threadIdx.x;
int rank = 0;
#pragma unroll
for (int i = 0; i < 16; i++) {
rank += (values[i] < values[tid]);
}
ranks[tid] = rank;
cg::sync(tile);
// Resolve elements with the same index.
for (int i = 0; i < 15; i++) {
if (tid > i && ranks[tid] == ranks[i]) {
++ranks[tid];
}
cg::sync(tile);
}
}
////////////////////////////////////////////////////////////////////////////////
// Load color block to shared mem
////////////////////////////////////////////////////////////////////////////////
__device__ void loadColorBlock(const uint *image, float3 colors[16],
float3 sums[16], int xrefs[16], int blockOffset,
cg::thread_block cta) {
const int bid = blockIdx.x + blockOffset;
const int idx = threadIdx.x;
__shared__ float dps[16];
float3 tmp;
cg::thread_group tile = cg::tiled_partition(cta, 16);
if (idx < 16) {
// Read color and copy to shared mem.
uint c = image[(bid)*16 + idx];
colors[idx].x = ((c >> 0) & 0xFF) * (1.0f / 255.0f);
colors[idx].y = ((c >> 8) & 0xFF) * (1.0f / 255.0f);
colors[idx].z = ((c >> 16) & 0xFF) * (1.0f / 255.0f);
cg::sync(tile);
// Sort colors along the best fit line.
colorSums(colors, sums, tile);
cg::sync(tile);
float3 axis = bestFitLine(colors, sums[0], tile);
cg::sync(tile);
dps[idx] = dot(colors[idx], axis);
cg::sync(tile);
sortColors(dps, xrefs, tile);
cg::sync(tile);
tmp = colors[idx];
cg::sync(tile);
colors[xrefs[idx]] = tmp;
}
}
////////////////////////////////////////////////////////////////////////////////
// Round color to RGB565 and expand
////////////////////////////////////////////////////////////////////////////////
inline __device__ float3 roundAndExpand(float3 v, ushort *w) {
v.x = rintf(__saturatef(v.x) * 31.0f);
v.y = rintf(__saturatef(v.y) * 63.0f);
v.z = rintf(__saturatef(v.z) * 31.0f);
*w = ((ushort)v.x << 11) | ((ushort)v.y << 5) | (ushort)v.z;
v.x *= 0.03227752766457f; // approximate integer bit expansion.
v.y *= 0.01583151765563f;
v.z *= 0.03227752766457f;
return v;
}
__constant__ float alphaTable4[4] = {9.0f, 0.0f, 6.0f, 3.0f};
__constant__ float alphaTable3[4] = {4.0f, 0.0f, 2.0f, 2.0f};
__constant__ const int prods4[4] = {0x090000, 0x000900, 0x040102, 0x010402};
__constant__ const int prods3[4] = {0x040000, 0x000400, 0x040101, 0x010401};
#define USE_TABLES 1
////////////////////////////////////////////////////////////////////////////////
// Evaluate permutations
////////////////////////////////////////////////////////////////////////////////
static __device__ float evalPermutation4(const float3 *colors, uint permutation,
ushort *start, ushort *end,
float3 color_sum) {
// Compute endpoints using least squares.
#if USE_TABLES
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
int akku = 0;
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++) {
const uint bits = permutation >> (2 * i);
alphax_sum += alphaTable4[bits & 3] * colors[i];
akku += prods4[bits & 3];
}
float alpha2_sum = float(akku >> 16);
float beta2_sum = float((akku >> 8) & 0xff);
float alphabeta_sum = float((akku >> 0) & 0xff);
float3 betax_sum = (9.0f * color_sum) - alphax_sum;
#else
float alpha2_sum = 0.0f;
float beta2_sum = 0.0f;
float alphabeta_sum = 0.0f;
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++) {
const uint bits = permutation >> (2 * i);
float beta = (bits & 1);
if (bits & 2) {
beta = (1 + beta) * (1.0f / 3.0f);
}
float alpha = 1.0f - beta;
alpha2_sum += alpha * alpha;
beta2_sum += beta * beta;
alphabeta_sum += alpha * beta;
alphax_sum += alpha * colors[i];
}
float3 betax_sum = color_sum - alphax_sum;
#endif
// alpha2, beta2, alphabeta and factor could be precomputed for each
// permutation, but it's faster to recompute them.
const float factor =
1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand(a, start);
b = roundAndExpand(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum +
2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return (0.111111111111f) * dot(e, kColorMetric);
}
static __device__ float evalPermutation3(const float3 *colors, uint permutation,
ushort *start, ushort *end,
float3 color_sum) {
// Compute endpoints using least squares.
#if USE_TABLES
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
int akku = 0;
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++) {
const uint bits = permutation >> (2 * i);
alphax_sum += alphaTable3[bits & 3] * colors[i];
akku += prods3[bits & 3];
}
float alpha2_sum = float(akku >> 16);
float beta2_sum = float((akku >> 8) & 0xff);
float alphabeta_sum = float((akku >> 0) & 0xff);
float3 betax_sum = (4.0f * color_sum) - alphax_sum;
#else
float alpha2_sum = 0.0f;
float beta2_sum = 0.0f;
float alphabeta_sum = 0.0f;
float3 alphax_sum = make_float3(0.0f, 0.0f, 0.0f);
// Compute alpha & beta for this permutation.
for (int i = 0; i < 16; i++) {
const uint bits = permutation >> (2 * i);
float beta = (bits & 1);
if (bits & 2) {
beta = 0.5f;
}
float alpha = 1.0f - beta;
alpha2_sum += alpha * alpha;
beta2_sum += beta * beta;
alphabeta_sum += alpha * beta;
alphax_sum += alpha * colors[i];
}
float3 betax_sum = color_sum - alphax_sum;
#endif
const float factor =
1.0f / (alpha2_sum * beta2_sum - alphabeta_sum * alphabeta_sum);
float3 a = (alphax_sum * beta2_sum - betax_sum * alphabeta_sum) * factor;
float3 b = (betax_sum * alpha2_sum - alphax_sum * alphabeta_sum) * factor;
// Round a, b to the closest 5-6-5 color and expand...
a = roundAndExpand(a, start);
b = roundAndExpand(b, end);
// compute the error
float3 e = a * a * alpha2_sum + b * b * beta2_sum +
2.0f * (a * b * alphabeta_sum - a * alphax_sum - b * betax_sum);
return (0.25f) * dot(e, kColorMetric);
}
__device__ void evalAllPermutations(const float3 *colors,
const uint *permutations, ushort &bestStart,
ushort &bestEnd, uint &bestPermutation,
float *errors, float3 color_sum,
cg::thread_block cta) {
const int idx = threadIdx.x;
float bestError = FLT_MAX;
__shared__ uint s_permutations[160];
for (int i = 0; i < 16; i++) {
int pidx = idx + NUM_THREADS * i;
if (pidx >= 992) {
break;
}
ushort start, end;
uint permutation = permutations[pidx];
if (pidx < 160) {
s_permutations[pidx] = permutation;
}
float error =
evalPermutation4(colors, permutation, &start, &end, color_sum);
if (error < bestError) {
bestError = error;
bestPermutation = permutation;
bestStart = start;
bestEnd = end;
}
}
if (bestStart < bestEnd) {
swap(bestEnd, bestStart);
bestPermutation ^= 0x55555555; // Flip indices.
}
cg::sync(cta); // Sync here to ensure s_permutations is valid going forward
for (int i = 0; i < 3; i++) {
int pidx = idx + NUM_THREADS * i;
if (pidx >= 160) {
break;
}
ushort start, end;
uint permutation = s_permutations[pidx];
float error =
evalPermutation3(colors, permutation, &start, &end, color_sum);
if (error < bestError) {
bestError = error;
bestPermutation = permutation;
bestStart = start;
bestEnd = end;
if (bestStart > bestEnd) {
swap(bestEnd, bestStart);
bestPermutation ^=
(~bestPermutation >> 1) & 0x55555555; // Flip indices.
}
}
}
errors[idx] = bestError;
}
////////////////////////////////////////////////////////////////////////////////
// Find index with minimum error
////////////////////////////////////////////////////////////////////////////////
__device__ int findMinError(float *errors, cg::thread_block cta) {
const int idx = threadIdx.x;
__shared__ int indices[NUM_THREADS];
indices[idx] = idx;
cg::sync(cta);
for (int d = NUM_THREADS / 2; d > 0; d >>= 1) {
float err0 = errors[idx];
float err1 = (idx + d) < NUM_THREADS ? errors[idx + d] : FLT_MAX;
int index1 = (idx + d) < NUM_THREADS ? indices[idx + d] : 0;
cg::sync(cta);
if (err1 < err0) {
errors[idx] = err1;
indices[idx] = index1;
}
cg::sync(cta);
}
return indices[0];
}
////////////////////////////////////////////////////////////////////////////////
// Save DXT block
////////////////////////////////////////////////////////////////////////////////
__device__ void saveBlockDXT1(ushort start, ushort end, uint permutation,
int xrefs[16], uint2 *result, int blockOffset) {
const int bid = blockIdx.x + blockOffset;
if (start == end) {
permutation = 0;
}
// Reorder permutation.
uint indices = 0;
for (int i = 0; i < 16; i++) {
int ref = xrefs[i];
indices |= ((permutation >> (2 * ref)) & 3) << (2 * i);
}
// Write endpoints.
result[bid].x = (end << 16) | start;
// Write palette indices.
result[bid].y = indices;
}
////////////////////////////////////////////////////////////////////////////////
// Compress color block
////////////////////////////////////////////////////////////////////////////////
__global__ void compress(const uint *permutations, const uint *image,
uint2 *result, int blockOffset) {
// Handle to thread block group
cg::thread_block cta = cg::this_thread_block();
const int idx = threadIdx.x;
__shared__ float3 colors[16];
__shared__ float3 sums[16];
__shared__ int xrefs[16];
loadColorBlock(image, colors, sums, xrefs, blockOffset, cta);
cg::sync(cta);
ushort bestStart, bestEnd;
uint bestPermutation;
__shared__ float errors[NUM_THREADS];
evalAllPermutations(colors, permutations, bestStart, bestEnd, bestPermutation,
errors, sums[0], cta);
// Use a parallel reduction to find minimum error.
const int minIdx = findMinError(errors, cta);
cg::sync(cta);
// Only write the result of the winner thread.
if (idx == minIdx) {
saveBlockDXT1(bestStart, bestEnd, bestPermutation, xrefs, result,
blockOffset);
}
}
// Helper structs and functions to validate the output of the compressor.
// We cannot simply do a bitwise compare, because different compilers produce
// different
// results for different targets due to floating point arithmetic.
union Color32 {
struct {
unsigned char b, g, r, a;
};
unsigned int u;
};
union Color16 {
struct {
unsigned short b : 5;
unsigned short g : 6;
unsigned short r : 5;
};
unsigned short u;
};
struct BlockDXT1 {
Color16 col0;
Color16 col1;
union {
unsigned char row[4];
unsigned int indices;
};
void decompress(Color32 colors[16]) const;
};
void BlockDXT1::decompress(Color32 *colors) const {
Color32 palette[4];
// Does bit expansion before interpolation.
palette[0].b = (col0.b << 3) | (col0.b >> 2);
palette[0].g = (col0.g << 2) | (col0.g >> 4);
palette[0].r = (col0.r << 3) | (col0.r >> 2);
palette[0].a = 0xFF;
palette[1].r = (col1.r << 3) | (col1.r >> 2);
palette[1].g = (col1.g << 2) | (col1.g >> 4);
palette[1].b = (col1.b << 3) | (col1.b >> 2);
palette[1].a = 0xFF;
if (col0.u > col1.u) {
// Four-color block: derive the other two colors.
palette[2].r = (2 * palette[0].r + palette[1].r) / 3;
palette[2].g = (2 * palette[0].g + palette[1].g) / 3;
palette[2].b = (2 * palette[0].b + palette[1].b) / 3;
palette[2].a = 0xFF;
palette[3].r = (2 * palette[1].r + palette[0].r) / 3;
palette[3].g = (2 * palette[1].g + palette[0].g) / 3;
palette[3].b = (2 * palette[1].b + palette[0].b) / 3;
palette[3].a = 0xFF;
} else {
// Three-color block: derive the other color.
palette[2].r = (palette[0].r + palette[1].r) / 2;
palette[2].g = (palette[0].g + palette[1].g) / 2;
palette[2].b = (palette[0].b + palette[1].b) / 2;
palette[2].a = 0xFF;
palette[3].r = 0x00;
palette[3].g = 0x00;
palette[3].b = 0x00;
palette[3].a = 0x00;
}
for (int i = 0; i < 16; i++) {
colors[i] = palette[(indices >> (2 * i)) & 0x3];
}
}
static int compareColors(const Color32 *b0, const Color32 *b1) {
int sum = 0;
for (int i = 0; i < 16; i++) {
int r = (b0[i].r - b1[i].r);
int g = (b0[i].g - b1[i].g);
int b = (b0[i].b - b1[i].b);
sum += r * r + g * g + b * b;
}
return sum;
}
static int compareBlock(const BlockDXT1 *b0, const BlockDXT1 *b1) {
Color32 colors0[16];
Color32 colors1[16];
if (memcmp(b0, b1, sizeof(BlockDXT1)) == 0) {
return 0;
} else {
b0->decompress(colors0);
b1->decompress(colors1);
return compareColors(colors0, colors1);
}
}
////////////////////////////////////////////////////////////////////////////////
// Program main
////////////////////////////////////////////////////////////////////////////////
int main(int argc, char **argv) {
printf("%s Starting...\n\n", argv[0]);
// use command-line specified CUDA device, otherwise use device with highest
// Gflops/s
findCudaDevice(argc, (const char **)argv);
// Load input image.
unsigned char *data = NULL;
uint W, H;
char *image_path = sdkFindFilePath(INPUT_IMAGE, argv[0]);
if (image_path == 0) {
printf("Error, unable to find source image <%s>\n", image_path);
exit(EXIT_FAILURE);
}
if (!sdkLoadPPM4ub(image_path, &data, &W, &H)) {
printf("Error, unable to open source image file <%s>\n", image_path);
exit(EXIT_FAILURE);
}
uint w = W, h = H;
printf("Image Loaded '%s', %d x %d pixels\n\n", image_path, w, h);
// Allocate input image.
const uint memSize = w * h * 4;
assert(0 != memSize);
uint *block_image = (uint *)malloc(memSize);
// Convert linear image to block linear.
for (uint by = 0; by < h / 4; by++) {
for (uint bx = 0; bx < w / 4; bx++) {
for (int i = 0; i < 16; i++) {
const int x = i & 3;
const int y = i / 4;
block_image[(by * w / 4 + bx) * 16 + i] =
((uint *)data)[(by * 4 + y) * 4 * (W / 4) + bx * 4 + x];
}
}
}
// copy into global mem
uint *d_data = NULL;
checkCudaErrors(cudaMalloc((void **)&d_data, memSize));
// Result
uint *d_result = NULL;
const uint compressedSize = (w / 4) * (h / 4) * 8;
checkCudaErrors(cudaMalloc((void **)&d_result, compressedSize));
uint *h_result = (uint *)malloc(compressedSize);
// Compute permutations.
uint permutations[1024];
computePermutations(permutations);
// Copy permutations host to devie.
uint *d_permutations = NULL;
checkCudaErrors(cudaMalloc((void **)&d_permutations, 1024 * sizeof(uint)));
checkCudaErrors(cudaMemcpy(d_permutations, permutations, 1024 * sizeof(uint),
cudaMemcpyHostToDevice));
// create a timer
StopWatchInterface *timer = NULL;
sdkCreateTimer(&timer);
// Copy image from host to device
checkCudaErrors(
cudaMemcpy(d_data, block_image, memSize, cudaMemcpyHostToDevice));
// Determine launch configuration and run timed computation numIterations
// times
uint blocks = ((w + 3) / 4) *
((h + 3) / 4); // rounds up by 1 block in each dim if %4 != 0
int devID;
cudaDeviceProp deviceProp;
// get number of SMs on this GPU
checkCudaErrors(cudaGetDevice(&devID));
checkCudaErrors(cudaGetDeviceProperties(&deviceProp, devID));
// Restrict the numbers of blocks to launch on low end GPUs to avoid kernel
// timeout
int blocksPerLaunch = min(blocks, 768 * deviceProp.multiProcessorCount);
printf("Running DXT Compression on %u x %u image...\n", w, h);
printf("\n%u Blocks, %u Threads per Block, %u Threads in Grid...\n\n", blocks,
NUM_THREADS, blocks * NUM_THREADS);
int numIterations = 1;
for (int i = -1; i < numIterations; ++i) {
if (i == 0) {
checkCudaErrors(cudaDeviceSynchronize());
sdkStartTimer(&timer);
}
for (int j = 0; j < (int)blocks; j += blocksPerLaunch) {
compress<<<min(blocksPerLaunch, blocks - j), NUM_THREADS>>>(
d_permutations, d_data, (uint2 *)d_result, j);
}
}
getLastCudaError("compress");
// sync to host, stop timer, record perf
checkCudaErrors(cudaDeviceSynchronize());
sdkStopTimer(&timer);
double dAvgTime = 1.0e-3 * sdkGetTimerValue(&timer) / (double)numIterations;
printf(
"dxtc, Throughput = %.4f MPixels/s, Time = %.5f s, Size = %u Pixels, "
"NumDevsUsed = %i, Workgroup = %d\n",
(1.0e-6 * (double)(W * H) / dAvgTime), dAvgTime, (W * H), 1, NUM_THREADS);
// copy result data from device to host
checkCudaErrors(
cudaMemcpy(h_result, d_result, compressedSize, cudaMemcpyDeviceToHost));
// Write out result data to DDS file
char output_filename[1024];
strcpy(output_filename, image_path);
strcpy(output_filename + strlen(image_path) - 3, "dds");
FILE *fp = fopen(output_filename, "wb");
if (fp == 0) {
printf("Error, unable to open output image <%s>\n", output_filename);
exit(EXIT_FAILURE);
}
DDSHeader header;
header.fourcc = FOURCC_DDS;
header.size = 124;
header.flags = (DDSD_WIDTH | DDSD_HEIGHT | DDSD_CAPS | DDSD_PIXELFORMAT |
DDSD_LINEARSIZE);
header.height = h;
header.width = w;
header.pitch = compressedSize;
header.depth = 0;
header.mipmapcount = 0;
memset(header.reserved, 0, sizeof(header.reserved));
header.pf.size = 32;
header.pf.flags = DDPF_FOURCC;
header.pf.fourcc = FOURCC_DXT1;
header.pf.bitcount = 0;
header.pf.rmask = 0;
header.pf.gmask = 0;
header.pf.bmask = 0;
header.pf.amask = 0;
header.caps.caps1 = DDSCAPS_TEXTURE;
header.caps.caps2 = 0;
header.caps.caps3 = 0;
header.caps.caps4 = 0;
header.notused = 0;
fwrite(&header, sizeof(DDSHeader), 1, fp);
fwrite(h_result, compressedSize, 1, fp);
fclose(fp);
// Make sure the generated image is correct.
const char *reference_image_path = sdkFindFilePath(REFERENCE_IMAGE, argv[0]);
if (reference_image_path == 0) {
printf("Error, unable to find reference image\n");
exit(EXIT_FAILURE);
}
fp = fopen(reference_image_path, "rb");
if (fp == 0) {
printf("Error, unable to open reference image\n");
exit(EXIT_FAILURE);
}
fseek(fp, sizeof(DDSHeader), SEEK_SET);
uint referenceSize = (W / 4) * (H / 4) * 8;
uint *reference = (uint *)malloc(referenceSize);
fread(reference, referenceSize, 1, fp);
fclose(fp);
printf("\nChecking accuracy...\n");
float rms = 0;
for (uint y = 0; y < h; y += 4) {
for (uint x = 0; x < w; x += 4) {
uint referenceBlockIdx = ((y / 4) * (W / 4) + (x / 4));
uint resultBlockIdx = ((y / 4) * (w / 4) + (x / 4));
int cmp = compareBlock(((BlockDXT1 *)h_result) + resultBlockIdx,
((BlockDXT1 *)reference) + referenceBlockIdx);
if (cmp != 0.0f) {
printf("Deviation at (%4d,%4d):\t%f rms\n", x / 4, y / 4,
float(cmp) / 16 / 3);
}
rms += cmp;
}
}
rms /= w * h * 3;
// Free allocated resources and exit
checkCudaErrors(cudaFree(d_permutations));
checkCudaErrors(cudaFree(d_data));
checkCudaErrors(cudaFree(d_result));
free(image_path);
free(data);
free(block_image);
free(h_result);
free(reference);
sdkDeleteTimer(&timer);
printf("RMS(reference, result) = %f\n\n", rms);
printf(rms <= ERROR_THRESHOLD ? "Test passed\n" : "Test failed!\n");
/* Return zero if test passed, one otherwise */
return rms > ERROR_THRESHOLD;
}