forked from NVIDIA/cuda-samples
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MonteCarlo_reduction.cuh
79 lines (70 loc) · 2.85 KB
/
MonteCarlo_reduction.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef MONTECARLO_REDUCTION_CUH
#define MONTECARLO_REDUCTION_CUH
#include <cooperative_groups.h>
namespace cg = cooperative_groups;
////////////////////////////////////////////////////////////////////////////////
// This function calculates total sum for each of the two input arrays.
// SUM_N must be power of two
// Unrolling provides a bit of a performance improvement for small
// to medium path counts.
////////////////////////////////////////////////////////////////////////////////
template <class T, int SUM_N, int blockSize>
__device__ void sumReduce(T *sum, T *sum2, cg::thread_block &cta,
cg::thread_block_tile<32> &tile32,
__TOptionValue *d_CallValue) {
const int VEC = 32;
const int tid = cta.thread_rank();
T beta = sum[tid];
T beta2 = sum2[tid];
T temp, temp2;
for (int i = VEC / 2; i > 0; i >>= 1) {
if (tile32.thread_rank() < i) {
temp = sum[tid + i];
temp2 = sum2[tid + i];
beta += temp;
beta2 += temp2;
sum[tid] = beta;
sum2[tid] = beta2;
}
cg::sync(tile32);
}
cg::sync(cta);
if (tid == 0) {
beta = 0;
beta2 = 0;
for (int i = 0; i < blockDim.x; i += VEC) {
beta += sum[i];
beta2 += sum2[i];
}
__TOptionValue t = {beta, beta2};
*d_CallValue = t;
}
cg::sync(cta);
}
#endif