forked from chemprop/chemprop
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
80 lines (74 loc) · 2.65 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import os
from setuptools import find_packages, setup
# Load version number
__version__ = None
src_dir = os.path.abspath(os.path.dirname(__file__))
version_file = os.path.join(src_dir, 'chemprop', '_version.py')
with open(version_file, encoding='utf-8') as fd:
exec(fd.read())
# Load README
with open('README.md', encoding='utf-8') as f:
long_description = f.read()
setup(
name='chemprop',
version=__version__,
author='Kyle Swanson, Kevin Yang, Wengong Jin, Lior Hirschfeld, Allison Tam',
author_email='[email protected]',
description='Molecular Property Prediction with Message Passing Neural Networks',
long_description=long_description,
long_description_content_type='text/markdown',
url='https://github.com/chemprop/chemprop',
download_url=f'https://github.com/chemprop/chemprop/v_{__version__}.tar.gz',
project_urls={
'Documentation': 'https://chemprop.readthedocs.io/en/latest/',
'Source': 'https://github.com/chemprop/chemprop',
'PyPi': 'https://pypi.org/project/chemprop/',
'Demo': 'http://chemprop.csail.mit.edu/',
},
license='MIT',
packages=find_packages(),
package_data={'chemprop': ['py.typed']},
entry_points={
'console_scripts': [
'chemprop_train=chemprop.train:chemprop_train',
'chemprop_predict=chemprop.train:chemprop_predict',
'chemprop_hyperopt=chemprop.hyperparameter_optimization:chemprop_hyperopt',
'chemprop_interpret=chemprop.interpret:chemprop_interpret',
'chemprop_web=chemprop.web.run:chemprop_web',
'sklearn_train=chemprop.sklearn_train:sklearn_train',
'sklearn_predict=chemprop.sklearn_predict:sklearn_predict',
]
},
install_requires=[
'flask>=1.1.2',
'hyperopt>=0.2.3',
'matplotlib>=3.1.3',
'numpy>=1.18.1',
'pandas>=1.0.3',
'pandas-flavor>=0.2.0',
'scikit-learn>=0.22.2.post1',
'scipy==1.4.1',
'sphinx>=3.1.2',
'tensorboardX>=2.0',
'torch>=1.5.1',
'tqdm>=4.45.0',
'typed-argument-parser>=1.5.4'
],
tests_require=['pytest', 'parameterized'],
python_requires='>=3.6',
classifiers=[
'Programming Language :: Python :: 3',
'Programming Language :: Python :: 3.6',
'Programming Language :: Python :: 3.7',
'Programming Language :: Python :: 3.8',
'License :: OSI Approved :: MIT License',
'Operating System :: OS Independent'
],
keywords=[
'chemistry',
'machine learning',
'property prediction',
'message passing neural network',
'graph neural network'
]
)