-
Notifications
You must be signed in to change notification settings - Fork 8
/
Guided.py
139 lines (112 loc) · 3.8 KB
/
Guided.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
#####################################################################
#
# Guided.py:
# Script demonstrating parallelized implementation of
# Phaser using genetic algorithms. Implemented with
# mpi4py.
#
# Siddharth Maddali
# Argonne National Laboratory
# February 2020
#
#####################################################################
import numpy as np
import scipy.io as sio
import time
import sys
from datetime import datetime
from mpi4py import MPI
from argparse import Namespace
import FigureOfMerit as fom
import Phaser as ph
import warnings
comm = MPI.COMM_WORLD
rank = comm.Get_rank() # worker index
size = comm.Get_size() # worker pool size
warnings.filterwarnings( 'ignore', category=FutureWarning )
# this doesn't seem to work
if rank==0:
print( '\nParallelizing on %d workers. '%size )
sys.stdout.flush()
# number of generations to breed forward
numGenerations = 7
############# USER EDIT #########################
# define phase retrieval recipe string here
er1 = 'ER:5+'+'+ER:5+'.join( [ 'SR:%.1f:0.1'%sig for sig in np.linspace( 3., 2., 7 ) ] )+'+ER:5'
sf = 'ER:5+'+'+ER:5+'.join( [ 'SR:%.1f:0.1'%sig for sig in np.linspace( 2., 1., 3 ) ] )+'+ER:5'
er2 = 'ER:5+'+'+ER:5+'.join( [ 'SR:1.:0.1' for sig in np.linspace( 1., 1., 3 ) ] )+'+ER:5'
recipe = er1 + '+HIO:50+' + sf + '+' + er2
# load data set
signal = Namespace( **sio.loadmat( 'singleScrewDislocation.mat' ) ).signal
# choose comparison metric for solutions
figureOfMerit = fom.Chi
# output .mat file
outfile = 'guidedResult.mat'
#################################################
# generate initial support
shp = signal.shape
supInit = np.zeros( shp )
supInit[
(shp[0]//2-shp[0]//6):(shp[0]//2+shp[0]//6),
(shp[1]//2-shp[1]//6):(shp[1]//2+shp[1]//6),
(shp[2]//2-shp[2]//6):(shp[2]//2+shp[2]//6)
] = 1. # i.e. a box 1/3 the size of the array
time.sleep( 1 )
# initialize worker pool
workID = 'Worker-%d'%rank
worker = ph.Phaser(
modulus=np.sqrt( signal ),
support=supInit.copy()
)
print( '%s: Online. '%workID )
sys.stdout.flush()
# start parallel phasing
time.sleep( 1 )
for generation in list( range( numGenerations ) ):
if rank==0:
print( '___________ Generation %d ____________'%generation )
sys.stdout.flush()
tstart = datetime.now()
worker.runRecipe( recipe )
worker.Retrieve()
tstop = datetime.now()
img = worker.finalImage
sup = worker.finalSupport
fm = figureOfMerit( worker.Modulus(), np.sqrt( signal ) )
print( '%s: Phased in '%workID, tstop-tstart, ', cost = %.2f'%fm )
sys.stdout.flush()
all_fms = [ rank, fm ]
all_fms = comm.gather( all_fms, root=0 )
if rank==0:
results = np.array( all_fms )
here = np.where( results[:,1]==results[:,1].min() )
winning_rank = here[0][0]
else:
winning_rank = None
winning_rank = comm.bcast( winning_rank, root=0 )
if rank==0 and generation < numGenerations-1:
print( 'Breeding solution %d into the others...'%winning_rank )
sys.stdout.flush()
if rank==winning_rank:
winning_img = img
new_sup = sup
else:
winning_img = np.empty( img.shape, dtype=complex )
new_sup = np.empty( sup.shape, dtype=float )
comm.Bcast( winning_img, root=winning_rank )
new_img = np.sqrt( winning_img * img )
comm.Bcast( new_sup, root=winning_rank )
new_sup = ( new_sup + sup > 0.5 ).astype( float ) # the union of two supports
worker.resetImage( new_img, new_sup )
if rank==winning_rank:
print( 'Final solution: worker %d. '%rank )
sio.savemat(
outfile,
{
'img':new_img,
'sup':new_sup
}
)
print( 'Dumped final solution to %s. '%outfile )
print( 'Done. ' )