-
Notifications
You must be signed in to change notification settings - Fork 2
/
app.py
89 lines (69 loc) · 2.51 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import re
import numpy as np
# Keras
from tensorflow.keras.models import load_model
from tensorflow.keras.preprocessing import image
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
from gevent.wsgi import WSGIServer
# Define a flask app
app = Flask(__name__)
# Model saved with Keras model.save()
MODEL_PATH = 'models/my_model_upd.h5'
#Load your trained model
model = load_model(MODEL_PATH)
model._make_predict_function() # Necessary to make everything ready to run on the GPU ahead of time
print('Model loaded. Start serving...')
# You can also use pretrained model from Keras
# Check https://keras.io/applications/
#from keras.applications.resnet50 import ResNet50
#model = ResNet50(weights='imagenet')
#print('Model loaded. Check http://127.0.0.1:5000/')
def model_predict(img_path, model):
img = image.load_img(img_path, target_size=(224,224)) #target_size must agree with what the trained model expects!!
# Preprocessing the image
img = image.img_to_array(img)
img = img/255
img = np.expand_dims(img, axis=0)
preds = model.predict(img)
pred = np.argmax(preds,axis = 1)
return pred
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
# Make prediction
pred = model_predict(file_path, model)
os.remove(file_path)#removes file from the server after prediction has been returned
# Arrange the correct return according to the model.
# In this model 1 is covid and 0 is Normal.
str1 = 'Patient Suffering from COVID-19'
str2 = 'Normal'
if pred[0] == 0:
return str2
else:
return str1
return None
#this section is used by gunicorn to serve the app on Heroku
if __name__ == '__main__':
app.run()
#uncomment this section to serve the app locally with gevent at: http://localhost:5000
# Serve the app with gevent
#http_server = WSGIServer(('', 5000), app)
#http_server.serve_forever()