-
Notifications
You must be signed in to change notification settings - Fork 0
/
Homework2.py
87 lines (71 loc) · 2.96 KB
/
Homework2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
__author__ = 'siavash'
import pandas as pd
import numpy as np
import math
import copy
import QSTK.qstkutil.qsdateutil as du
import datetime as dt
import QSTK.qstkutil.DataAccess as da
import QSTK.qstkutil.tsutil as tsu
import QSTK.qstkstudy.EventProfiler as ep
"""
Accepts a list of symbols along with start and end date
Returns the Event Matrix which is a pandas Datamatrix
Event matrix has the following structure :
|IBM |GOOG|XOM |MSFT| GS | JP |
(d1)|nan |nan | 1 |nan |nan | 1 |
(d2)|nan | 1 |nan |nan |nan |nan |
(d3)| 1 |nan | 1 |nan | 1 |nan |
(d4)|nan | 1 |nan | 1 |nan |nan |
...................................
...................................
Also, d1 = start date
nan = no information about any event.
1 = status bit(positively confirms the event occurence)
"""
def find_events(ls_symbols, d_data):
''' Finding the event dataframe '''
df_close = d_data['actual_close']
ts_market = df_close['SPY']
print "Finding Events"
# Creating an empty dataframe
df_events = copy.deepcopy(df_close)
df_events = df_events * np.NAN
print df_events
# Time stamps for the event range
ldt_timestamps = df_close.index
print "------------------------------------------------------------------"
print ldt_timestamps
for s_sym in ls_symbols:
for i in range(1, len(ldt_timestamps)):
# Calculating the returns for this timestamp
f_symprice_today = df_close[s_sym].ix[ldt_timestamps[i]]
f_symprice_yest = df_close[s_sym].ix[ldt_timestamps[i - 1]]
f_marketprice_today = ts_market.ix[ldt_timestamps[i]]
f_marketprice_yest = ts_market.ix[ldt_timestamps[i - 1]]
f_symreturn_today = (f_symprice_today / f_symprice_yest) - 1
f_marketreturn_today = (f_marketprice_today / f_marketprice_yest) - 1
if f_symprice_yest >= 6.0 and f_symprice_today < 6.0:
df_events[s_sym].ix[ldt_timestamps[i]] = 1
return df_events
if __name__ == '__main__':
dt_start = dt.datetime(2008, 1, 1)
dt_end = dt.datetime(2009, 12, 31)
ldt_timestamps = du.getNYSEdays(dt_start, dt_end, dt.timedelta(hours=16))
dataobj = da.DataAccess('Yahoo')
ls_symbols = dataobj.get_symbols_from_list('sp5002008')
ls_symbols.append('SPY')
print "reading data"
ls_keys = ['open', 'high', 'low', 'close', 'volume', 'actual_close']
ldf_data = dataobj.get_data(ldt_timestamps, ls_symbols, ls_keys)
d_data = dict(zip(ls_keys, ldf_data))
for s_key in ls_keys:
d_data[s_key] = d_data[s_key].fillna(method='ffill')
d_data[s_key] = d_data[s_key].fillna(method='bfill')
d_data[s_key] = d_data[s_key].fillna(1.0)
df_events = find_events(ls_symbols, d_data)
print "found ", len(df_events), " events"
print "Creating Study"
ep.eventprofiler(df_events, d_data, i_lookback=20, i_lookforward=20,
s_filename='MyEventStudy.pdf', b_market_neutral=True, b_errorbars=True,
s_market_sym='SPY')