forked from open-compass/opencompass
-
Notifications
You must be signed in to change notification settings - Fork 0
/
eval_subjective_alpacaeval_official.py
79 lines (69 loc) · 2.5 KB
/
eval_subjective_alpacaeval_official.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from mmengine.config import read_base
with read_base():
from opencompass.configs.datasets.subjective.alpaca_eval.alpacav2_judgeby_gpt4 import subjective_datasets as alpacav2
from opencompass.models import HuggingFaceCausalLM, HuggingFace, HuggingFaceChatGLM3
from opencompass.models.openai_api import OpenAI
from opencompass.partitioners import NaivePartitioner, SizePartitioner
from opencompass.partitioners.sub_naive import SubjectiveNaivePartitioner
from opencompass.partitioners.sub_size import SubjectiveSizePartitioner
from opencompass.runners import LocalRunner
from opencompass.runners import SlurmSequentialRunner
from opencompass.tasks import OpenICLInferTask
from opencompass.tasks.outer_eval.alpacaeval import AlpacaEvalTask
from opencompass.summarizers import AlpacaSummarizer
api_meta_template = dict(
round=[
dict(role='HUMAN', api_role='HUMAN'),
dict(role='BOT', api_role='BOT', generate=True),
],
reserved_roles=[dict(role='SYSTEM', api_role='SYSTEM')],
)
# To run this config, please ensure to successfully installed `alpaca-eval==0.6` and `scikit-learn==1.5`
# -------------Inference Stage ----------------------------------------
# For subjective evaluation, we often set do sample for models
models = [
dict(
type=HuggingFaceChatGLM3,
abbr='chatglm3-6b',
path='THUDM/chatglm3-6b',
tokenizer_path='THUDM/chatglm3-6b',
model_kwargs=dict(
device_map='auto',
trust_remote_code=True,
),
tokenizer_kwargs=dict(
padding_side='left',
truncation_side='left',
trust_remote_code=True,
),
generation_kwargs=dict(
do_sample=True,
),
meta_template=api_meta_template,
max_out_len=2048,
max_seq_len=4096,
batch_size=1,
run_cfg=dict(num_gpus=1, num_procs=1),
)
]
datasets = [*alpacav2]
# -------------Evalation Stage ----------------------------------------
## ------------- JudgeLLM Configuration
gpt4_judge = dict(
abbr='GPT4-Turbo',
path='gpt-4-1106-preview',
key='', # The key will be obtained from $OPENAI_API_KEY, but you can write down your key here as well
config='weighted_alpaca_eval_gpt4_turbo'
)
## ------------- Evaluation Configuration
eval = dict(
partitioner=dict(
type=NaivePartitioner
),
runner=dict(
type=LocalRunner,
max_num_workers=256,
task=dict(type=AlpacaEvalTask, judge_cfg=gpt4_judge),
)
)
work_dir = 'outputs/alpaca/'