forked from openai/openai-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
embeddings.py
262 lines (209 loc) · 10.5 KB
/
embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
import base64
from typing import List, Union, Iterable, cast
from typing_extensions import Literal
import httpx
from .. import _legacy_response
from ..types import embedding_create_params
from .._types import NOT_GIVEN, Body, Query, Headers, NotGiven
from .._utils import is_given, maybe_transform
from .._compat import cached_property
from .._extras import numpy as np, has_numpy
from .._resource import SyncAPIResource, AsyncAPIResource
from .._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from .._base_client import (
make_request_options,
)
from ..types.create_embedding_response import CreateEmbeddingResponse
__all__ = ["Embeddings", "AsyncEmbeddings"]
class Embeddings(SyncAPIResource):
@cached_property
def with_raw_response(self) -> EmbeddingsWithRawResponse:
return EmbeddingsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> EmbeddingsWithStreamingResponse:
return EmbeddingsWithStreamingResponse(self)
def create(
self,
*,
input: Union[str, List[str], Iterable[int], Iterable[Iterable[int]]],
model: Union[str, Literal["text-embedding-ada-002", "text-embedding-3-small", "text-embedding-3-large"]],
dimensions: int | NotGiven = NOT_GIVEN,
encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> CreateEmbeddingResponse:
"""
Creates an embedding vector representing the input text.
Args:
input: Input text to embed, encoded as a string or array of tokens. To embed multiple
inputs in a single request, pass an array of strings or array of token arrays.
The input must not exceed the max input tokens for the model (8192 tokens for
`text-embedding-ada-002`), cannot be an empty string, and any array must be 2048
dimensions or less.
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
for counting tokens.
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
dimensions: The number of dimensions the resulting output embeddings should have. Only
supported in `text-embedding-3` and later models.
encoding_format: The format to return the embeddings in. Can be either `float` or
[`base64`](https://pypi.org/project/pybase64/).
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
params = {
"input": input,
"model": model,
"user": user,
"dimensions": dimensions,
"encoding_format": encoding_format,
}
if not is_given(encoding_format) and has_numpy():
params["encoding_format"] = "base64"
def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse:
if is_given(encoding_format):
# don't modify the response object if a user explicitly asked for a format
return obj
for embedding in obj.data:
data = cast(object, embedding.embedding)
if not isinstance(data, str):
# numpy is not installed / base64 optimisation isn't enabled for this model yet
continue
embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call]
base64.b64decode(data), dtype="float32"
).tolist()
return obj
return self._post(
"/embeddings",
body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams),
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
post_parser=parser,
),
cast_to=CreateEmbeddingResponse,
)
class AsyncEmbeddings(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncEmbeddingsWithRawResponse:
return AsyncEmbeddingsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncEmbeddingsWithStreamingResponse:
return AsyncEmbeddingsWithStreamingResponse(self)
async def create(
self,
*,
input: Union[str, List[str], Iterable[int], Iterable[Iterable[int]]],
model: Union[str, Literal["text-embedding-ada-002", "text-embedding-3-small", "text-embedding-3-large"]],
dimensions: int | NotGiven = NOT_GIVEN,
encoding_format: Literal["float", "base64"] | NotGiven = NOT_GIVEN,
user: str | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> CreateEmbeddingResponse:
"""
Creates an embedding vector representing the input text.
Args:
input: Input text to embed, encoded as a string or array of tokens. To embed multiple
inputs in a single request, pass an array of strings or array of token arrays.
The input must not exceed the max input tokens for the model (8192 tokens for
`text-embedding-ada-002`), cannot be an empty string, and any array must be 2048
dimensions or less.
[Example Python code](https://cookbook.openai.com/examples/how_to_count_tokens_with_tiktoken)
for counting tokens.
model: ID of the model to use. You can use the
[List models](https://platform.openai.com/docs/api-reference/models/list) API to
see all of your available models, or see our
[Model overview](https://platform.openai.com/docs/models/overview) for
descriptions of them.
dimensions: The number of dimensions the resulting output embeddings should have. Only
supported in `text-embedding-3` and later models.
encoding_format: The format to return the embeddings in. Can be either `float` or
[`base64`](https://pypi.org/project/pybase64/).
user: A unique identifier representing your end-user, which can help OpenAI to monitor
and detect abuse.
[Learn more](https://platform.openai.com/docs/guides/safety-best-practices/end-user-ids).
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
params = {
"input": input,
"model": model,
"user": user,
"dimensions": dimensions,
"encoding_format": encoding_format,
}
if not is_given(encoding_format) and has_numpy():
params["encoding_format"] = "base64"
def parser(obj: CreateEmbeddingResponse) -> CreateEmbeddingResponse:
if is_given(encoding_format):
# don't modify the response object if a user explicitly asked for a format
return obj
for embedding in obj.data:
data = cast(object, embedding.embedding)
if not isinstance(data, str):
# numpy is not installed / base64 optimisation isn't enabled for this model yet
continue
embedding.embedding = np.frombuffer( # type: ignore[no-untyped-call]
base64.b64decode(data), dtype="float32"
).tolist()
return obj
return await self._post(
"/embeddings",
body=maybe_transform(params, embedding_create_params.EmbeddingCreateParams),
options=make_request_options(
extra_headers=extra_headers,
extra_query=extra_query,
extra_body=extra_body,
timeout=timeout,
post_parser=parser,
),
cast_to=CreateEmbeddingResponse,
)
class EmbeddingsWithRawResponse:
def __init__(self, embeddings: Embeddings) -> None:
self._embeddings = embeddings
self.create = _legacy_response.to_raw_response_wrapper(
embeddings.create,
)
class AsyncEmbeddingsWithRawResponse:
def __init__(self, embeddings: AsyncEmbeddings) -> None:
self._embeddings = embeddings
self.create = _legacy_response.async_to_raw_response_wrapper(
embeddings.create,
)
class EmbeddingsWithStreamingResponse:
def __init__(self, embeddings: Embeddings) -> None:
self._embeddings = embeddings
self.create = to_streamed_response_wrapper(
embeddings.create,
)
class AsyncEmbeddingsWithStreamingResponse:
def __init__(self, embeddings: AsyncEmbeddings) -> None:
self._embeddings = embeddings
self.create = async_to_streamed_response_wrapper(
embeddings.create,
)