forked from openai/openai-python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
transcriptions.py
254 lines (207 loc) · 10.8 KB
/
transcriptions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# File generated from our OpenAPI spec by Stainless. See CONTRIBUTING.md for details.
from __future__ import annotations
from typing import List, Union, Mapping, cast
from typing_extensions import Literal
import httpx
from ... import _legacy_response
from ..._types import NOT_GIVEN, Body, Query, Headers, NotGiven, FileTypes
from ..._utils import (
extract_files,
maybe_transform,
deepcopy_minimal,
async_maybe_transform,
)
from ..._compat import cached_property
from ..._resource import SyncAPIResource, AsyncAPIResource
from ..._response import to_streamed_response_wrapper, async_to_streamed_response_wrapper
from ...types.audio import transcription_create_params
from ..._base_client import make_request_options
from ...types.audio_model import AudioModel
from ...types.audio.transcription import Transcription
__all__ = ["Transcriptions", "AsyncTranscriptions"]
class Transcriptions(SyncAPIResource):
@cached_property
def with_raw_response(self) -> TranscriptionsWithRawResponse:
return TranscriptionsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> TranscriptionsWithStreamingResponse:
return TranscriptionsWithStreamingResponse(self)
def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
language: str | NotGiven = NOT_GIVEN,
prompt: str | NotGiven = NOT_GIVEN,
response_format: Literal["json", "text", "srt", "verbose_json", "vtt"] | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Transcription:
"""
Transcribes audio into the input language.
Args:
file:
The audio file object (not file name) to transcribe, in one of these formats:
flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
model: ID of the model to use. Only `whisper-1` (which is powered by our open source
Whisper V2 model) is currently available.
language: The language of the input audio. Supplying the input language in
[ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format will
improve accuracy and latency.
prompt: An optional text to guide the model's style or continue a previous audio
segment. The
[prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting)
should match the audio language.
response_format: The format of the transcript output, in one of these options: `json`, `text`,
`srt`, `verbose_json`, or `vtt`.
temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the
output more random, while lower values like 0.2 will make it more focused and
deterministic. If set to 0, the model will use
[log probability](https://en.wikipedia.org/wiki/Log_probability) to
automatically increase the temperature until certain thresholds are hit.
timestamp_granularities: The timestamp granularities to populate for this transcription.
`response_format` must be set `verbose_json` to use timestamp granularities.
Either or both of these options are supported: `word`, or `segment`. Note: There
is no additional latency for segment timestamps, but generating word timestamps
incurs additional latency.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
body = deepcopy_minimal(
{
"file": file,
"model": model,
"language": language,
"prompt": prompt,
"response_format": response_format,
"temperature": temperature,
"timestamp_granularities": timestamp_granularities,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["file"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return self._post(
"/audio/transcriptions",
body=maybe_transform(body, transcription_create_params.TranscriptionCreateParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Transcription,
)
class AsyncTranscriptions(AsyncAPIResource):
@cached_property
def with_raw_response(self) -> AsyncTranscriptionsWithRawResponse:
return AsyncTranscriptionsWithRawResponse(self)
@cached_property
def with_streaming_response(self) -> AsyncTranscriptionsWithStreamingResponse:
return AsyncTranscriptionsWithStreamingResponse(self)
async def create(
self,
*,
file: FileTypes,
model: Union[str, AudioModel],
language: str | NotGiven = NOT_GIVEN,
prompt: str | NotGiven = NOT_GIVEN,
response_format: Literal["json", "text", "srt", "verbose_json", "vtt"] | NotGiven = NOT_GIVEN,
temperature: float | NotGiven = NOT_GIVEN,
timestamp_granularities: List[Literal["word", "segment"]] | NotGiven = NOT_GIVEN,
# Use the following arguments if you need to pass additional parameters to the API that aren't available via kwargs.
# The extra values given here take precedence over values defined on the client or passed to this method.
extra_headers: Headers | None = None,
extra_query: Query | None = None,
extra_body: Body | None = None,
timeout: float | httpx.Timeout | None | NotGiven = NOT_GIVEN,
) -> Transcription:
"""
Transcribes audio into the input language.
Args:
file:
The audio file object (not file name) to transcribe, in one of these formats:
flac, mp3, mp4, mpeg, mpga, m4a, ogg, wav, or webm.
model: ID of the model to use. Only `whisper-1` (which is powered by our open source
Whisper V2 model) is currently available.
language: The language of the input audio. Supplying the input language in
[ISO-639-1](https://en.wikipedia.org/wiki/List_of_ISO_639-1_codes) format will
improve accuracy and latency.
prompt: An optional text to guide the model's style or continue a previous audio
segment. The
[prompt](https://platform.openai.com/docs/guides/speech-to-text/prompting)
should match the audio language.
response_format: The format of the transcript output, in one of these options: `json`, `text`,
`srt`, `verbose_json`, or `vtt`.
temperature: The sampling temperature, between 0 and 1. Higher values like 0.8 will make the
output more random, while lower values like 0.2 will make it more focused and
deterministic. If set to 0, the model will use
[log probability](https://en.wikipedia.org/wiki/Log_probability) to
automatically increase the temperature until certain thresholds are hit.
timestamp_granularities: The timestamp granularities to populate for this transcription.
`response_format` must be set `verbose_json` to use timestamp granularities.
Either or both of these options are supported: `word`, or `segment`. Note: There
is no additional latency for segment timestamps, but generating word timestamps
incurs additional latency.
extra_headers: Send extra headers
extra_query: Add additional query parameters to the request
extra_body: Add additional JSON properties to the request
timeout: Override the client-level default timeout for this request, in seconds
"""
body = deepcopy_minimal(
{
"file": file,
"model": model,
"language": language,
"prompt": prompt,
"response_format": response_format,
"temperature": temperature,
"timestamp_granularities": timestamp_granularities,
}
)
files = extract_files(cast(Mapping[str, object], body), paths=[["file"]])
# It should be noted that the actual Content-Type header that will be
# sent to the server will contain a `boundary` parameter, e.g.
# multipart/form-data; boundary=---abc--
extra_headers = {"Content-Type": "multipart/form-data", **(extra_headers or {})}
return await self._post(
"/audio/transcriptions",
body=await async_maybe_transform(body, transcription_create_params.TranscriptionCreateParams),
files=files,
options=make_request_options(
extra_headers=extra_headers, extra_query=extra_query, extra_body=extra_body, timeout=timeout
),
cast_to=Transcription,
)
class TranscriptionsWithRawResponse:
def __init__(self, transcriptions: Transcriptions) -> None:
self._transcriptions = transcriptions
self.create = _legacy_response.to_raw_response_wrapper(
transcriptions.create,
)
class AsyncTranscriptionsWithRawResponse:
def __init__(self, transcriptions: AsyncTranscriptions) -> None:
self._transcriptions = transcriptions
self.create = _legacy_response.async_to_raw_response_wrapper(
transcriptions.create,
)
class TranscriptionsWithStreamingResponse:
def __init__(self, transcriptions: Transcriptions) -> None:
self._transcriptions = transcriptions
self.create = to_streamed_response_wrapper(
transcriptions.create,
)
class AsyncTranscriptionsWithStreamingResponse:
def __init__(self, transcriptions: AsyncTranscriptions) -> None:
self._transcriptions = transcriptions
self.create = async_to_streamed_response_wrapper(
transcriptions.create,
)