diff --git a/src/funcchain/model/patches/azure.py b/src/funcchain/model/patches/azure.py deleted file mode 100644 index 50fba98..0000000 --- a/src/funcchain/model/patches/azure.py +++ /dev/null @@ -1,208 +0,0 @@ -"""Azure OpenAI chat wrapper. (from langchain_community)""" -from __future__ import annotations - -import logging -import os -from typing import Any, Callable, Dict, List, Optional, Union - -import openai -from langchain_core.outputs import ChatResult -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator -from langchain_core.utils import convert_to_secret_str, get_from_dict_or_env - -from .openai import ChatOpenAI - -logger = logging.getLogger(__name__) - - -class AzureChatOpenAI(ChatOpenAI): - """`Azure OpenAI` Chat Completion API. - - To use this class you - must have a deployed model on Azure OpenAI. Use `deployment_name` in the - constructor to refer to the "Model deployment name" in the Azure portal. - - In addition, you should have the - following environment variables set or passed in constructor in lower case: - - ``AZURE_OPENAI_API_KEY`` - - ``AZURE_OPENAI_ENDPOINT`` - - ``AZURE_OPENAI_AD_TOKEN`` - - ``OPENAI_API_VERSION`` - - ``OPENAI_PROXY`` - - For example, if you have `gpt-3.5-turbo` deployed, with the deployment name - `35-turbo-dev`, the constructor should look like: - - .. code-block:: python - - from langchain_community import AzureChatOpenAI - - AzureChatOpenAI( - azure_deployment="35-turbo-dev", - openai_api_version="2023-05-15", - ) - - Be aware the API version may change. - - You can also specify the version of the model using ``model_version`` constructor - parameter, as Azure OpenAI doesn't return model version with the response. - - Default is empty. When you specify the version, it will be appended to the - model name in the response. Setting correct version will help you to calculate the - cost properly. Model version is not validated, so make sure you set it correctly - to get the correct cost. - - Any parameters that are valid to be passed to the openai.create call can be passed - in, even if not explicitly saved on this class. - """ - - azure_endpoint: Union[str, None] = None - """Your Azure endpoint, including the resource. - - Automatically inferred from env var `AZURE_OPENAI_ENDPOINT` if not provided. - - Example: `https://example-resource.azure.openai.com/` - """ - deployment_name: Union[str, None] = Field(default=None, alias="azure_deployment") - """A model deployment. - - If given sets the base client URL to include `/deployments/{azure_deployment}`. - Note: this means you won't be able to use non-deployment endpoints. - """ - openai_api_version: str = Field(default="", alias="api_version") - """Automatically inferred from env var `OPENAI_API_VERSION` if not provided.""" - openai_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") - """Automatically inferred from env var `AZURE_OPENAI_API_KEY` if not provided.""" - azure_ad_token: Optional[SecretStr] = None - """Your Azure Active Directory token. - - Automatically inferred from env var `AZURE_OPENAI_AD_TOKEN` if not provided. - - For more: - https://www.microsoft.com/en-us/security/business/identity-access/microsoft-entra-id. - """ # noqa: E501 - azure_ad_token_provider: Union[Callable[[], str], None] = None - """A function that returns an Azure Active Directory token. - - Will be invoked on every request. - """ - model_version: str = "" - """Legacy, for openai<1.0.0 support.""" - openai_api_type: str = "" - """Legacy, for openai<1.0.0 support.""" - validate_base_url: bool = True - """For backwards compatibility. If legacy val openai_api_base is passed in, try to - infer if it is a base_url or azure_endpoint and update accordingly. - """ - - @classmethod - def get_lc_namespace(cls) -> List[str]: - """Get the namespace of the langchain object.""" - return ["langchain", "chat_models", "azure_openai"] - - @root_validator() - def validate_environment(cls, values: Dict) -> Dict: - """Validate that api key and python package exists in environment.""" - if values["n"] < 1: - raise ValueError("n must be at least 1.") - if values["n"] > 1 and values["streaming"]: - raise ValueError("n must be 1 when streaming.") - - # Check OPENAI_KEY for backwards compatibility. - # TODO: Remove OPENAI_API_KEY support to avoid possible conflict when using - # other forms of azure credentials. - openai_api_key = values["openai_api_key"] or os.getenv("AZURE_OPENAI_API_KEY") or os.getenv("OPENAI_API_KEY") - values["openai_api_key"] = convert_to_secret_str(openai_api_key) if openai_api_key else None - values["openai_api_base"] = values["openai_api_base"] or os.getenv("OPENAI_API_BASE") - values["openai_api_version"] = values["openai_api_version"] or os.getenv("OPENAI_API_VERSION") - # Check OPENAI_ORGANIZATION for backwards compatibility. - values["openai_organization"] = ( - values["openai_organization"] or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") - ) - values["azure_endpoint"] = values["azure_endpoint"] or os.getenv("AZURE_OPENAI_ENDPOINT") - azure_ad_token = values["azure_ad_token"] or os.getenv("AZURE_OPENAI_AD_TOKEN") - values["azure_ad_token"] = convert_to_secret_str(azure_ad_token) if azure_ad_token else None - - values["openai_api_type"] = get_from_dict_or_env(values, "openai_api_type", "OPENAI_API_TYPE", default="azure") - values["openai_proxy"] = get_from_dict_or_env(values, "openai_proxy", "OPENAI_PROXY", default="") - # For backwards compatibility. Before openai v1, no distinction was made - # between azure_endpoint and base_url (openai_api_base). - openai_api_base = values["openai_api_base"] - if openai_api_base and values["validate_base_url"]: - if "/openai" not in openai_api_base: - raise ValueError( - "As of openai>=1.0.0, Azure endpoints should be specified via " - "the `azure_endpoint` param not `openai_api_base` " - "(or alias `base_url`)." - ) - if values["deployment_name"]: - raise ValueError( - "As of openai>=1.0.0, if `azure_deployment` (or alias " - "`deployment_name`) is specified then " - "`base_url` (or alias `openai_api_base`) should not be. " - "If specifying `azure_deployment`/`deployment_name` then use " - "`azure_endpoint` instead of `base_url`.\n\n" - "For example, you could specify:\n\n" - 'azure_deployment="https://xxx.openai.azure.com/", ' - 'deployment_name="my-deployment"\n\n' - "Or you can equivalently specify:\n\n" - 'base_url="https://xxx.openai.azure.com/openai/deployments/my-deployment"' # noqa: E501 - ) - client_params = { - "api_version": values["openai_api_version"], - "azure_endpoint": values["azure_endpoint"], - "azure_deployment": values["deployment_name"], - "api_key": values["openai_api_key"].get_secret_value() if values["openai_api_key"] else None, - "azure_ad_token": values["azure_ad_token"].get_secret_value() if values["azure_ad_token"] else None, - "azure_ad_token_provider": values["azure_ad_token_provider"], - "organization": values["openai_organization"], - "base_url": values["openai_api_base"], - "timeout": values["request_timeout"], - "max_retries": values["max_retries"], - "default_headers": values["default_headers"], - "default_query": values["default_query"], - "http_client": values["http_client"], - } - values["client"] = openai.AzureOpenAI(**client_params).chat.completions - values["async_client"] = openai.AsyncAzureOpenAI(**client_params).chat.completions - return values - - @property - def _identifying_params(self) -> Dict[str, Any]: - """Get the identifying parameters.""" - return {**self._default_params} - - @property - def _llm_type(self) -> str: - return "azure-openai-chat" - - @property - def lc_attributes(self) -> Dict[str, Any]: - return { - "openai_api_type": self.openai_api_type, - "openai_api_version": self.openai_api_version, - } - - def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult: - if not isinstance(response, dict): - response = response.dict() - for res in response["choices"]: - if res.get("finish_reason", None) == "content_filter": - raise ValueError("Azure has not provided the response due to a content filter " "being triggered") - chat_result = super()._create_chat_result(response) - - if "model" in response: - model = response["model"] - if self.model_version: - model = f"{model}-{self.model_version}" - - chat_result.llm_output = chat_result.llm_output or {} - chat_result.llm_output["model_name"] = model - if "prompt_filter_results" in response: - chat_result.llm_output = chat_result.llm_output or {} - chat_result.llm_output["prompt_filter_results"] = response["prompt_filter_results"] - for chat_gen, response_choice in zip(chat_result.generations, response["choices"]): - chat_gen.generation_info = chat_gen.generation_info or {} - chat_gen.generation_info["content_filter_results"] = response_choice.get("content_filter_results", {}) - - return chat_result diff --git a/src/funcchain/model/patches/openai.py b/src/funcchain/model/patches/openai.py deleted file mode 100644 index 5b1c8fa..0000000 --- a/src/funcchain/model/patches/openai.py +++ /dev/null @@ -1,671 +0,0 @@ -"""OpenAI chat wrapper. (from langchain_community)""" - -from __future__ import annotations - -import logging -import os -import sys -from typing import ( - Any, - AsyncIterator, - Callable, - Dict, - Iterator, - List, - Literal, - Mapping, - Optional, - Sequence, - Tuple, - Type, - TypedDict, - Union, - cast, -) - -import openai -import tiktoken -from langchain_core.callbacks import ( - AsyncCallbackManagerForLLMRun, - CallbackManagerForLLMRun, -) -from langchain_core.language_models import LanguageModelInput -from langchain_core.language_models.chat_models import ( - BaseChatModel, - agenerate_from_stream, - generate_from_stream, -) -from langchain_core.messages import ( - AIMessage, - AIMessageChunk, - BaseMessage, - BaseMessageChunk, - ChatMessage, - ChatMessageChunk, - FunctionMessage, - FunctionMessageChunk, - HumanMessage, - HumanMessageChunk, - SystemMessage, - SystemMessageChunk, - ToolMessage, - ToolMessageChunk, -) -from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult -from langchain_core.pydantic_v1 import BaseModel, Field, SecretStr, root_validator -from langchain_core.runnables import Runnable -from langchain_core.tools import BaseTool -from langchain_core.utils import ( - convert_to_secret_str, - get_from_dict_or_env, - get_pydantic_field_names, -) -from langchain_core.utils.function_calling import ( - convert_to_openai_function, - convert_to_openai_tool, -) -from langchain_core.utils.utils import build_extra_kwargs - -logger = logging.getLogger(__name__) - - -def _convert_dict_to_message(_dict: Mapping[str, Any]) -> BaseMessage: - """Convert a dictionary to a LangChain message. - - Args: - _dict: The dictionary. - - Returns: - The LangChain message. - """ - role = _dict.get("role") - if role == "user": - return HumanMessage(content=_dict.get("content", "")) - elif role == "assistant": - # Fix for azure - # Also OpenAI returns None for tool invocations - content = _dict.get("content", "") or "" - additional_kwargs: Dict = {} - if function_call := _dict.get("function_call"): - additional_kwargs["function_call"] = dict(function_call) - if tool_calls := _dict.get("tool_calls"): - additional_kwargs["tool_calls"] = tool_calls - return AIMessage(content=content, additional_kwargs=additional_kwargs) - elif role == "system": - return SystemMessage(content=_dict.get("content", "")) - elif role == "function": - return FunctionMessage(content=_dict.get("content", ""), name=_dict.get("name")) - elif role == "tool": - additional_kwargs = {} - if "name" in _dict: - additional_kwargs["name"] = _dict["name"] - return ToolMessage( - content=_dict.get("content", ""), - tool_call_id=_dict.get("tool_call_id"), - additional_kwargs=additional_kwargs, - ) - else: - return ChatMessage(content=_dict.get("content", ""), role=role) - - -def _convert_message_to_dict(message: BaseMessage) -> dict: - """Convert a LangChain message to a dictionary. - - Args: - message: The LangChain message. - - Returns: - The dictionary. - """ - message_dict: Dict[str, Any] - if isinstance(message, ChatMessage): - message_dict = {"role": message.role, "content": message.content} - elif isinstance(message, HumanMessage): - message_dict = {"role": "user", "content": message.content} - elif isinstance(message, AIMessage): - message_dict = {"role": "assistant", "content": message.content} - if "function_call" in message.additional_kwargs: - message_dict["function_call"] = message.additional_kwargs["function_call"] - # If function call only, content is None not empty string - if message_dict["content"] == "": - message_dict["content"] = None - if "tool_calls" in message.additional_kwargs: - message_dict["tool_calls"] = message.additional_kwargs["tool_calls"] - # If tool calls only, content is None not empty string - if message_dict["content"] == "": - message_dict["content"] = None - elif isinstance(message, SystemMessage): - message_dict = {"role": "system", "content": message.content} - elif isinstance(message, FunctionMessage): - message_dict = { - "role": "function", - "content": message.content, - "name": message.name, - } - elif isinstance(message, ToolMessage): - message_dict = { - "role": "tool", - "content": message.content, - "tool_call_id": message.tool_call_id, - } - else: - raise TypeError(f"Got unknown type {message}") - if "name" in message.additional_kwargs: - message_dict["name"] = message.additional_kwargs["name"] - return message_dict - - -def _convert_delta_to_message_chunk( - _dict: Mapping[str, Any], default_class: Type[BaseMessageChunk] -) -> BaseMessageChunk: - role = cast(str, _dict.get("role")) - content = cast(str, _dict.get("content") or "") - additional_kwargs: Dict = {} - if _dict.get("function_call"): - function_call = dict(_dict["function_call"]) - if "name" in function_call and function_call["name"] is None: - function_call["name"] = "" - additional_kwargs["function_call"] = function_call - if _dict.get("tool_calls"): - additional_kwargs["tool_calls"] = _dict["tool_calls"] - - if role == "user" or default_class == HumanMessageChunk: - return HumanMessageChunk(content=content) - elif role == "assistant" or default_class == AIMessageChunk: - return AIMessageChunk(content=content, additional_kwargs=additional_kwargs) - elif role == "system" or default_class == SystemMessageChunk: - return SystemMessageChunk(content=content) - elif role == "function" or default_class == FunctionMessageChunk: - return FunctionMessageChunk(content=content, name=_dict["name"]) - elif role == "tool" or default_class == ToolMessageChunk: - return ToolMessageChunk(content=content, tool_call_id=_dict["tool_call_id"]) - elif role or default_class == ChatMessageChunk: - return ChatMessageChunk(content=content, role=role) - else: - return default_class(content=content) # type: ignore - - -class _FunctionCall(TypedDict): - name: str - - -class ChatOpenAI(BaseChatModel): - """`OpenAI` Chat large language models API. - - To use, you should have the - environment variable ``OPENAI_API_KEY`` set with your API key. - - Any parameters that are valid to be passed to the openai.create call can be passed - in, even if not explicitly saved on this class. - - Example: - .. code-block:: python - - from langchain_community.chat_models import ChatOpenAI - openai = ChatOpenAI(model_name="gpt-3.5-turbo") - """ - - @property - def lc_secrets(self) -> Dict[str, str]: - return {"openai_api_key": "OPENAI_API_KEY"} - - @classmethod - def get_lc_namespace(cls) -> List[str]: - """Get the namespace of the langchain object.""" - return ["langchain", "chat_models", "openai"] - - @property - def lc_attributes(self) -> Dict[str, Any]: - attributes: Dict[str, Any] = {} - - if self.openai_organization: - attributes["openai_organization"] = self.openai_organization - - if self.openai_api_base: - attributes["openai_api_base"] = self.openai_api_base - - if self.openai_proxy: - attributes["openai_proxy"] = self.openai_proxy - - return attributes - - @classmethod - def is_lc_serializable(cls) -> bool: - """Return whether this model can be serialized by Langchain.""" - return True - - client: Any = Field(default=None, exclude=True) #: :meta private: - async_client: Any = Field(default=None, exclude=True) #: :meta private: - model_name: str = Field(default="gpt-3.5-turbo", alias="model") - """Model name to use.""" - temperature: float = 0.7 - """What sampling temperature to use.""" - model_kwargs: Dict[str, Any] = Field(default_factory=dict) - """Holds any model parameters valid for `create` call not explicitly specified.""" - openai_api_key: Optional[SecretStr] = Field(default=None, alias="api_key") - """Automatically inferred from env var `OPENAI_API_KEY` if not provided.""" - openai_api_base: Optional[str] = Field(default=None, alias="base_url") - """Base URL path for API requests, leave blank if not using a proxy or service - emulator.""" - openai_organization: Optional[str] = Field(default=None, alias="organization") - """Automatically inferred from env var `OPENAI_ORG_ID` if not provided.""" - # to support explicit proxy for OpenAI - openai_proxy: Optional[str] = None - request_timeout: Union[float, Tuple[float, float], Any, None] = Field(default=None, alias="timeout") - """Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or - None.""" - max_retries: int = 2 - """Maximum number of retries to make when generating.""" - streaming: bool = False - """Whether to stream the results or not.""" - n: int = 1 - """Number of chat completions to generate for each prompt.""" - max_tokens: Optional[int] = None - """Maximum number of tokens to generate.""" - tiktoken_model_name: Optional[str] = None - """The model name to pass to tiktoken when using this class. - Tiktoken is used to count the number of tokens in documents to constrain - them to be under a certain limit. By default, when set to None, this will - be the same as the embedding model name. However, there are some cases - where you may want to use this Embedding class with a model name not - supported by tiktoken. This can include when using Azure embeddings or - when using one of the many model providers that expose an OpenAI-like - API but with different models. In those cases, in order to avoid erroring - when tiktoken is called, you can specify a model name to use here.""" - default_headers: Union[Mapping[str, str], None] = None - default_query: Union[Mapping[str, object], None] = None - # Configure a custom httpx client. See the - # [httpx documentation](https://www.python-httpx.org/api/#client) for more details. - http_client: Union[Any, None] = None - """Optional httpx.Client.""" - - class Config: - """Configuration for this pydantic object.""" - - allow_population_by_field_name = True - - @root_validator(pre=True) - def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]: - """Build extra kwargs from additional params that were passed in.""" - all_required_field_names = get_pydantic_field_names(cls) - extra = values.get("model_kwargs", {}) - values["model_kwargs"] = build_extra_kwargs(extra, values, all_required_field_names) - return values - - @root_validator() - def validate_environment(cls, values: Dict) -> Dict: - """Validate that api key and python package exists in environment.""" - if values["n"] < 1: - raise ValueError("n must be at least 1.") - if values["n"] > 1 and values["streaming"]: - raise ValueError("n must be 1 when streaming.") - - values["openai_api_key"] = convert_to_secret_str( - get_from_dict_or_env(values, "openai_api_key", "OPENAI_API_KEY") - ) - # Check OPENAI_ORGANIZATION for backwards compatibility. - values["openai_organization"] = ( - values["openai_organization"] or os.getenv("OPENAI_ORG_ID") or os.getenv("OPENAI_ORGANIZATION") - ) - values["openai_api_base"] = values["openai_api_base"] or os.getenv("OPENAI_API_BASE") - values["openai_proxy"] = get_from_dict_or_env( - values, - "openai_proxy", - "OPENAI_PROXY", - default="", - ) - - client_params = { - "api_key": (values["openai_api_key"].get_secret_value() if values["openai_api_key"] else None), - "organization": values["openai_organization"], - "base_url": values["openai_api_base"], - "timeout": values["request_timeout"], - "max_retries": values["max_retries"], - "default_headers": values["default_headers"], - "default_query": values["default_query"], - "http_client": values["http_client"], - } - - if not values.get("client"): - values["client"] = openai.OpenAI(**client_params).chat.completions - if not values.get("async_client"): - values["async_client"] = openai.AsyncOpenAI(**client_params).chat.completions - return values - - @property - def _default_params(self) -> Dict[str, Any]: - """Get the default parameters for calling OpenAI API.""" - params = { - "model": self.model_name, - "stream": self.streaming, - "n": self.n, - "temperature": self.temperature, - **self.model_kwargs, - } - if self.max_tokens is not None: - params["max_tokens"] = self.max_tokens - return params - - def _combine_llm_outputs(self, llm_outputs: List[Optional[dict]]) -> dict: - overall_token_usage: dict = {} - system_fingerprint = None - for output in llm_outputs: - if output is None: - # Happens in streaming - continue - token_usage = output["token_usage"] - if token_usage is not None: - for k, v in token_usage.items(): - if k in overall_token_usage: - overall_token_usage[k] += v - else: - overall_token_usage[k] = v - if system_fingerprint is None: - system_fingerprint = output.get("system_fingerprint") - combined = {"token_usage": overall_token_usage, "model_name": self.model_name} - if system_fingerprint: - combined["system_fingerprint"] = system_fingerprint - return combined - - def _stream( - self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> Iterator[ChatGenerationChunk]: - message_dicts, params = self._create_message_dicts(messages, stop) - params = {**params, **kwargs, "stream": True} - - default_chunk_class = AIMessageChunk - for chunk in self.client.create(messages=message_dicts, **params): - if not isinstance(chunk, dict): - chunk = chunk.dict() - if len(chunk["choices"]) == 0: - continue - choice = chunk["choices"][0] - chunk = _convert_delta_to_message_chunk(choice["delta"], default_chunk_class) - generation_info = {} - if finish_reason := choice.get("finish_reason"): - generation_info["finish_reason"] = finish_reason - logprobs = choice.get("logprobs") - if logprobs: - generation_info["logprobs"] = logprobs - default_chunk_class = chunk.__class__ - chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info or None) - if run_manager: - run_manager.on_llm_new_token(chunk.text, chunk=chunk, logprobs=logprobs) - yield chunk - - def _generate( - self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, - run_manager: Optional[CallbackManagerForLLMRun] = None, - stream: Optional[bool] = None, - **kwargs: Any, - ) -> ChatResult: - should_stream = stream if stream is not None else self.streaming - if should_stream: - stream_iter = self._stream(messages, stop=stop, run_manager=run_manager, **kwargs) - return generate_from_stream(stream_iter) - message_dicts, params = self._create_message_dicts(messages, stop) - params = { - **params, - **({"stream": stream} if stream is not None else {}), - **kwargs, - } - response = self.client.create(messages=message_dicts, **params) - return self._create_chat_result(response) - - def _create_message_dicts( - self, messages: List[BaseMessage], stop: Optional[List[str]] - ) -> Tuple[List[Dict[str, Any]], Dict[str, Any]]: - params = self._default_params - if stop is not None: - if "stop" in params: - raise ValueError("`stop` found in both the input and default params.") - params["stop"] = stop - message_dicts = [_convert_message_to_dict(m) for m in messages] - return message_dicts, params - - def _create_chat_result(self, response: Union[dict, BaseModel]) -> ChatResult: - generations = [] - if not isinstance(response, dict): - response = response.dict() - for res in response["choices"]: - message = _convert_dict_to_message(res["message"]) - generation_info = dict(finish_reason=res.get("finish_reason")) - if "logprobs" in res: - generation_info["logprobs"] = res["logprobs"] - gen = ChatGeneration( - message=message, - generation_info=generation_info, - ) - generations.append(gen) - token_usage = response.get("usage", {}) - llm_output = { - "token_usage": token_usage, - "model_name": self.model_name, - "system_fingerprint": response.get("system_fingerprint", ""), - } - return ChatResult(generations=generations, llm_output=llm_output) - - async def _astream( - self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, - run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, - **kwargs: Any, - ) -> AsyncIterator[ChatGenerationChunk]: - message_dicts, params = self._create_message_dicts(messages, stop) - params = {**params, **kwargs, "stream": True} - - default_chunk_class = AIMessageChunk - async for chunk in await self.async_client.create(messages=message_dicts, **params): - if not isinstance(chunk, dict): - chunk = chunk.dict() - if len(chunk["choices"]) == 0: - continue - choice = chunk["choices"][0] - chunk = _convert_delta_to_message_chunk(choice["delta"], default_chunk_class) - generation_info = {} - if finish_reason := choice.get("finish_reason"): - generation_info["finish_reason"] = finish_reason - logprobs = choice.get("logprobs") - if logprobs: - generation_info["logprobs"] = logprobs - default_chunk_class = chunk.__class__ - chunk = ChatGenerationChunk(message=chunk, generation_info=generation_info or None) - if run_manager: - await run_manager.on_llm_new_token(token=chunk.text, chunk=chunk, logprobs=logprobs) - yield chunk - - async def _agenerate( - self, - messages: List[BaseMessage], - stop: Optional[List[str]] = None, - run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, - stream: Optional[bool] = None, - **kwargs: Any, - ) -> ChatResult: - should_stream = stream if stream is not None else self.streaming - if should_stream: - stream_iter = self._astream(messages, stop=stop, run_manager=run_manager, **kwargs) - return await agenerate_from_stream(stream_iter) - - message_dicts, params = self._create_message_dicts(messages, stop) - params = { - **params, - **({"stream": stream} if stream is not None else {}), - **kwargs, - } - response = await self.async_client.create(messages=message_dicts, **params) - return self._create_chat_result(response) - - @property - def _identifying_params(self) -> Dict[str, Any]: - """Get the identifying parameters.""" - return {"model_name": self.model_name, **self._default_params} - - def _get_invocation_params(self, stop: Optional[List[str]] = None, **kwargs: Any) -> Dict[str, Any]: - """Get the parameters used to invoke the model.""" - return { - "model": self.model_name, - **super()._get_invocation_params(stop=stop), - **self._default_params, - **kwargs, - } - - @property - def _llm_type(self) -> str: - """Return type of chat model.""" - return "openai-chat" - - def _get_encoding_model(self) -> Tuple[str, tiktoken.Encoding]: - if self.tiktoken_model_name is not None: - model = self.tiktoken_model_name - else: - model = self.model_name - try: - encoding = tiktoken.encoding_for_model(model) - except KeyError: - model = "cl100k_base" - encoding = tiktoken.get_encoding(model) - return model, encoding - - def get_token_ids(self, text: str) -> List[int]: - """Get the tokens present in the text with tiktoken package.""" - # tiktoken NOT supported for Python 3.7 or below - if sys.version_info[1] <= 7: - return super().get_token_ids(text) - _, encoding_model = self._get_encoding_model() - return encoding_model.encode(text) - - def get_num_tokens_from_messages(self, messages: List[BaseMessage]) -> int: - """Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package. - - Official documentation: https://github.com/openai/openai-cookbook/blob/ - main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb""" - if sys.version_info[1] <= 7: - return super().get_num_tokens_from_messages(messages) - model, encoding = self._get_encoding_model() - if model.startswith("gpt-3.5-turbo-0301"): - # every message follows {role/name}\n{content}\n - tokens_per_message = 4 - # if there's a name, the role is omitted - tokens_per_name = -1 - elif model.startswith("gpt-3.5-turbo") or model.startswith("gpt-4"): - tokens_per_message = 3 - tokens_per_name = 1 - else: - raise NotImplementedError( - f"get_num_tokens_from_messages() is not presently implemented " - f"for model {model}. See " - "https://platform.openai.com/docs/guides/text-generation/managing-tokens" - " for information on how messages are converted to tokens." - ) - num_tokens = 0 - messages_dict = [_convert_message_to_dict(m) for m in messages] - for message in messages_dict: - num_tokens += tokens_per_message - for key, value in message.items(): - # Cast str(value) in case the message value is not a string - # This occurs with function messages - num_tokens += len(encoding.encode(str(value))) - if key == "name": - num_tokens += tokens_per_name - # every reply is primed with assistant - num_tokens += 3 - return num_tokens - - def bind_functions( - self, - functions: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], - function_call: Optional[Union[_FunctionCall, str, Literal["auto", "none"]]] = None, - **kwargs: Any, - ) -> Runnable[LanguageModelInput, BaseMessage]: - """Bind functions (and other objects) to this chat model. - - Assumes model is compatible with OpenAI function-calling API. - - NOTE: Using bind_tools is recommended instead, as the `functions` and - `function_call` request parameters are officially marked as deprecated by - OpenAI. - - Args: - functions: A list of function definitions to bind to this chat model. - Can be a dictionary, pydantic model, or callable. Pydantic - models and callables will be automatically converted to - their schema dictionary representation. - function_call: Which function to require the model to call. - Must be the name of the single provided function or - "auto" to automatically determine which function to call - (if any). - **kwargs: Any additional parameters to pass to the - :class:`~langchain.runnable.Runnable` constructor. - """ - - formatted_functions = [convert_to_openai_function(fn) for fn in functions] - if function_call is not None: - function_call = ( - {"name": function_call} - if isinstance(function_call, str) and function_call not in ("auto", "none") - else function_call - ) - if isinstance(function_call, dict) and len(formatted_functions) != 1: - raise ValueError("When specifying `function_call`, you must provide exactly one " "function.") - if isinstance(function_call, dict) and formatted_functions[0]["name"] != function_call["name"]: - raise ValueError( - f"Function call {function_call} was specified, but the only " - f"provided function was {formatted_functions[0]['name']}." - ) - kwargs = {**kwargs, "function_call": function_call} - return super().bind( - functions=formatted_functions, - **kwargs, - ) - - def bind_tools( - self, - tools: Sequence[Union[Dict[str, Any], Type[BaseModel], Callable, BaseTool]], - *, - tool_choice: Optional[Union[dict, str, Literal["auto", "none"]]] = None, - **kwargs: Any, - ) -> Runnable[LanguageModelInput, BaseMessage]: - """Bind tool-like objects to this chat model. - - Assumes model is compatible with OpenAI tool-calling API. - - Args: - tools: A list of tool definitions to bind to this chat model. - Can be a dictionary, pydantic model, callable, or BaseTool. Pydantic - models, callables, and BaseTools will be automatically converted to - their schema dictionary representation. - tool_choice: Which tool to require the model to call. - Must be the name of the single provided function or - "auto" to automatically determine which function to call - (if any), or a dict of the form: - {"type": "function", "function": {"name": <>}}. - **kwargs: Any additional parameters to pass to the - :class:`~langchain.runnable.Runnable` constructor. - """ - - formatted_tools = [convert_to_openai_tool(tool) for tool in tools] - if tool_choice is not None: - if isinstance(tool_choice, str) and (tool_choice not in ("auto", "none")): - tool_choice = {"type": "function", "function": {"name": tool_choice}} - if isinstance(tool_choice, dict) and (len(formatted_tools) != 1): - raise ValueError( - "When specifying `tool_choice`, you must provide exactly one " - f"tool. Received {len(formatted_tools)} tools." - ) - if isinstance(tool_choice, dict) and ( - formatted_tools[0]["function"]["name"] != tool_choice["function"]["name"] - ): - raise ValueError( - f"Tool choice {tool_choice} was specified, but the only " - f"provided tool was {formatted_tools[0]['function']['name']}." - ) - kwargs["tool_choice"] = tool_choice - return super().bind(tools=formatted_tools, **kwargs)