-
Notifications
You must be signed in to change notification settings - Fork 62
/
run_inference.py
181 lines (156 loc) · 6.07 KB
/
run_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import os
import imageio
from PIL import Image
import torch
import torch.nn.functional as F
from diffusers import IFSuperResolutionPipeline, VideoToVideoSDPipeline
from diffusers.utils.torch_utils import randn_tensor
from showone.pipelines import TextToVideoIFPipeline, TextToVideoIFInterpPipeline, TextToVideoIFSuperResolutionPipeline
from showone.pipelines.pipeline_t2v_base_pixel import tensor2vid
from showone.pipelines.pipeline_t2v_sr_pixel_cond import TextToVideoIFSuperResolutionPipeline_Cond
# Base Model
# When using "showlab/show-1-base-0.0", it's advisable to increase the number of inference steps (e.g., 100)
# and opt for a larger guidance scale (e.g., 12.0) to enhance visual quality.
pretrained_model_path = "showlab/show-1-base"
pipe_base = TextToVideoIFPipeline.from_pretrained(
pretrained_model_path,
torch_dtype=torch.float16,
variant="fp16"
)
pipe_base.enable_model_cpu_offload()
# Interpolation Model
pretrained_model_path = "showlab/show-1-interpolation"
pipe_interp_1 = TextToVideoIFInterpPipeline.from_pretrained(
pretrained_model_path,
torch_dtype=torch.float16,
variant="fp16"
)
pipe_interp_1.enable_model_cpu_offload()
# Super-Resolution Model 1
# Image super-resolution model from DeepFloyd https://huggingface.co/DeepFloyd/IF-II-L-v1.0
pretrained_model_path = "DeepFloyd/IF-II-L-v1.0"
pipe_sr_1_image = IFSuperResolutionPipeline.from_pretrained(
pretrained_model_path,
text_encoder=None,
torch_dtype=torch.float16,
variant="fp16"
)
pipe_sr_1_image.enable_model_cpu_offload()
pretrained_model_path = "showlab/show-1-sr1"
pipe_sr_1_cond = TextToVideoIFSuperResolutionPipeline_Cond.from_pretrained(
pretrained_model_path,
torch_dtype=torch.float16
)
pipe_sr_1_cond.enable_model_cpu_offload()
# Super-Resolution Model 2
pretrained_model_path = "showlab/show-1-sr2"
pipe_sr_2 = VideoToVideoSDPipeline.from_pretrained(
pretrained_model_path,
torch_dtype=torch.float16
)
pipe_sr_2.enable_model_cpu_offload()
pipe_sr_2.enable_vae_slicing()
# Inference
prompt = "A burning lamborghini driving on rainbow."
output_dir = "./outputs/example"
negative_prompt = "low resolution, blur"
seed = 345
os.makedirs(output_dir, exist_ok=True)
# Text embeds
prompt_embeds, negative_embeds = pipe_base.encode_prompt(prompt)
# Keyframes generation (8x64x40, 2fps)
video_frames = pipe_base(
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
num_frames=8,
height=40,
width=64,
num_inference_steps=75,
guidance_scale=9.0,
generator=torch.manual_seed(seed),
output_type="pt"
).frames
imageio.mimsave(f"{output_dir}/{prompt}_base.gif", tensor2vid(video_frames.clone()), fps=2)
# Frame interpolation (8x64x40, 2fps -> 29x64x40, 7.5fps)
bsz, channel, num_frames, height, width = video_frames.shape
new_num_frames = 3 * (num_frames - 1) + num_frames
new_video_frames = torch.zeros((bsz, channel, new_num_frames, height, width),
dtype=video_frames.dtype, device=video_frames.device)
new_video_frames[:, :, torch.arange(0, new_num_frames, 4), ...] = video_frames
init_noise = randn_tensor((bsz, channel, 5, height, width), dtype=video_frames.dtype,
device=video_frames.device, generator=torch.manual_seed(seed))
for i in range(num_frames - 1):
batch_i = torch.zeros((bsz, channel, 5, height, width), dtype=video_frames.dtype, device=video_frames.device)
batch_i[:, :, 0, ...] = video_frames[:, :, i, ...]
batch_i[:, :, -1, ...] = video_frames[:, :, i + 1, ...]
batch_i = pipe_interp_1(
pixel_values=batch_i,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
num_frames=batch_i.shape[2],
height=40,
width=64,
num_inference_steps=75,
guidance_scale=4.0,
generator=torch.manual_seed(seed),
output_type="pt",
init_noise=init_noise,
cond_interpolation=True,
).frames
new_video_frames[:, :, i * 4:i * 4 + 5, ...] = batch_i
video_frames = new_video_frames
imageio.mimsave(f"{output_dir}/{prompt}_interp.gif", tensor2vid(video_frames.clone()), fps=8)
# Super-resolution 1 (29x64x40 -> 29x256x160)
bsz, channel, num_frames, height, width = video_frames.shape
window_size, stride = 8, 7
new_video_frames = torch.zeros(
(bsz, channel, num_frames, height * 4, width * 4),
dtype=video_frames.dtype,
device=video_frames.device)
for i in range(0, num_frames - window_size + 1, stride):
batch_i = video_frames[:, :, i:i + window_size, ...]
all_frame_cond = None
if i == 0:
first_frame_cond = pipe_sr_1_image(
image=video_frames[:, :, 0, ...],
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
height=height * 4,
width=width * 4,
num_inference_steps=70,
guidance_scale=4.0,
noise_level=150,
generator=torch.manual_seed(seed),
output_type="pt"
).images
first_frame_cond = first_frame_cond.unsqueeze(2)
else:
first_frame_cond = new_video_frames[:, :, i:i + 1, ...]
batch_i = pipe_sr_1_cond(
image=batch_i,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_embeds,
first_frame_cond=first_frame_cond,
height=height * 4,
width=width * 4,
num_inference_steps=125,
guidance_scale=7.0,
noise_level=250,
generator=torch.manual_seed(seed),
output_type="pt"
).frames
new_video_frames[:, :, i:i + window_size, ...] = batch_i
video_frames = new_video_frames
imageio.mimsave(f"{output_dir}/{prompt}_sr1.gif", tensor2vid(video_frames.clone()), fps=8)
# Super-resolution 2 (29x256x160 -> 29x576x320)
video_frames = [Image.fromarray(frame).resize((576, 320)) for frame in tensor2vid(video_frames.clone())]
video_frames = pipe_sr_2(
prompt,
negative_prompt=negative_prompt,
video=video_frames,
strength=0.8,
num_inference_steps=50,
generator=torch.manual_seed(seed),
output_type="pt"
).frames
imageio.mimsave(f"{output_dir}/{prompt}.gif", tensor2vid(video_frames.clone()), fps=8)