-
Notifications
You must be signed in to change notification settings - Fork 625
/
decimal.go
2339 lines (2021 loc) · 62.9 KB
/
decimal.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Package decimal implements an arbitrary precision fixed-point decimal.
//
// The zero-value of a Decimal is 0, as you would expect.
//
// The best way to create a new Decimal is to use decimal.NewFromString, ex:
//
// n, err := decimal.NewFromString("-123.4567")
// n.String() // output: "-123.4567"
//
// To use Decimal as part of a struct:
//
// type StructName struct {
// Number Decimal
// }
//
// Note: This can "only" represent numbers with a maximum of 2^31 digits after the decimal point.
package decimal
import (
"database/sql/driver"
"encoding/binary"
"fmt"
"math"
"math/big"
"regexp"
"strconv"
"strings"
)
// DivisionPrecision is the number of decimal places in the result when it
// doesn't divide exactly.
//
// Example:
//
// d1 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3))
// d1.String() // output: "0.6666666666666667"
// d2 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(30000))
// d2.String() // output: "0.0000666666666667"
// d3 := decimal.NewFromFloat(20000).Div(decimal.NewFromFloat(3))
// d3.String() // output: "6666.6666666666666667"
// decimal.DivisionPrecision = 3
// d4 := decimal.NewFromFloat(2).Div(decimal.NewFromFloat(3))
// d4.String() // output: "0.667"
var DivisionPrecision = 16
// PowPrecisionNegativeExponent specifies the maximum precision of the result (digits after decimal point)
// when calculating decimal power. Only used for cases where the exponent is a negative number.
// This constant applies to Pow, PowInt32 and PowBigInt methods, PowWithPrecision method is not constrained by it.
//
// Example:
//
// d1, err := decimal.NewFromFloat(15.2).PowInt32(-2)
// d1.String() // output: "0.0043282548476454"
//
// decimal.PowPrecisionNegativeExponent = 24
// d2, err := decimal.NewFromFloat(15.2).PowInt32(-2)
// d2.String() // output: "0.004328254847645429362881"
var PowPrecisionNegativeExponent = 16
// MarshalJSONWithoutQuotes should be set to true if you want the decimal to
// be JSON marshaled as a number, instead of as a string.
// WARNING: this is dangerous for decimals with many digits, since many JSON
// unmarshallers (ex: Javascript's) will unmarshal JSON numbers to IEEE 754
// double-precision floating point numbers, which means you can potentially
// silently lose precision.
var MarshalJSONWithoutQuotes = false
// ExpMaxIterations specifies the maximum number of iterations needed to calculate
// precise natural exponent value using ExpHullAbrham method.
var ExpMaxIterations = 1000
// Zero constant, to make computations faster.
// Zero should never be compared with == or != directly, please use decimal.Equal or decimal.Cmp instead.
var Zero = New(0, 1)
var zeroInt = big.NewInt(0)
var oneInt = big.NewInt(1)
var twoInt = big.NewInt(2)
var fourInt = big.NewInt(4)
var fiveInt = big.NewInt(5)
var tenInt = big.NewInt(10)
var twentyInt = big.NewInt(20)
var factorials = []Decimal{New(1, 0)}
// Decimal represents a fixed-point decimal. It is immutable.
// number = value * 10 ^ exp
type Decimal struct {
value *big.Int
// NOTE(vadim): this must be an int32, because we cast it to float64 during
// calculations. If exp is 64 bit, we might lose precision.
// If we cared about being able to represent every possible decimal, we
// could make exp a *big.Int but it would hurt performance and numbers
// like that are unrealistic.
exp int32
}
// New returns a new fixed-point decimal, value * 10 ^ exp.
func New(value int64, exp int32) Decimal {
return Decimal{
value: big.NewInt(value),
exp: exp,
}
}
// NewFromInt converts an int64 to Decimal.
//
// Example:
//
// NewFromInt(123).String() // output: "123"
// NewFromInt(-10).String() // output: "-10"
func NewFromInt(value int64) Decimal {
return Decimal{
value: big.NewInt(value),
exp: 0,
}
}
// NewFromInt32 converts an int32 to Decimal.
//
// Example:
//
// NewFromInt(123).String() // output: "123"
// NewFromInt(-10).String() // output: "-10"
func NewFromInt32(value int32) Decimal {
return Decimal{
value: big.NewInt(int64(value)),
exp: 0,
}
}
// NewFromUint64 converts an uint64 to Decimal.
//
// Example:
//
// NewFromUint64(123).String() // output: "123"
func NewFromUint64(value uint64) Decimal {
return Decimal{
value: new(big.Int).SetUint64(value),
exp: 0,
}
}
// NewFromBigInt returns a new Decimal from a big.Int, value * 10 ^ exp
func NewFromBigInt(value *big.Int, exp int32) Decimal {
return Decimal{
value: new(big.Int).Set(value),
exp: exp,
}
}
// NewFromBigRat returns a new Decimal from a big.Rat. The numerator and
// denominator are divided and rounded to the given precision.
//
// Example:
//
// d1 := NewFromBigRat(big.NewRat(0, 1), 0) // output: "0"
// d2 := NewFromBigRat(big.NewRat(4, 5), 1) // output: "0.8"
// d3 := NewFromBigRat(big.NewRat(1000, 3), 3) // output: "333.333"
// d4 := NewFromBigRat(big.NewRat(2, 7), 4) // output: "0.2857"
func NewFromBigRat(value *big.Rat, precision int32) Decimal {
return Decimal{
value: new(big.Int).Set(value.Num()),
exp: 0,
}.DivRound(Decimal{
value: new(big.Int).Set(value.Denom()),
exp: 0,
}, precision)
}
// NewFromString returns a new Decimal from a string representation.
// Trailing zeroes are not trimmed.
//
// Example:
//
// d, err := NewFromString("-123.45")
// d2, err := NewFromString(".0001")
// d3, err := NewFromString("1.47000")
func NewFromString(value string) (Decimal, error) {
originalInput := value
var intString string
var exp int64
// Check if number is using scientific notation
eIndex := strings.IndexAny(value, "Ee")
if eIndex != -1 {
expInt, err := strconv.ParseInt(value[eIndex+1:], 10, 32)
if err != nil {
if e, ok := err.(*strconv.NumError); ok && e.Err == strconv.ErrRange {
return Decimal{}, fmt.Errorf("can't convert %s to decimal: fractional part too long", value)
}
return Decimal{}, fmt.Errorf("can't convert %s to decimal: exponent is not numeric", value)
}
value = value[:eIndex]
exp = expInt
}
pIndex := -1
vLen := len(value)
for i := 0; i < vLen; i++ {
if value[i] == '.' {
if pIndex > -1 {
return Decimal{}, fmt.Errorf("can't convert %s to decimal: too many .s", value)
}
pIndex = i
}
}
if pIndex == -1 {
// There is no decimal point, we can just parse the original string as
// an int
intString = value
} else {
if pIndex+1 < vLen {
intString = value[:pIndex] + value[pIndex+1:]
} else {
intString = value[:pIndex]
}
expInt := -len(value[pIndex+1:])
exp += int64(expInt)
}
var dValue *big.Int
// strconv.ParseInt is faster than new(big.Int).SetString so this is just a shortcut for strings we know won't overflow
if len(intString) <= 18 {
parsed64, err := strconv.ParseInt(intString, 10, 64)
if err != nil {
return Decimal{}, fmt.Errorf("can't convert %s to decimal", value)
}
dValue = big.NewInt(parsed64)
} else {
dValue = new(big.Int)
_, ok := dValue.SetString(intString, 10)
if !ok {
return Decimal{}, fmt.Errorf("can't convert %s to decimal", value)
}
}
if exp < math.MinInt32 || exp > math.MaxInt32 {
// NOTE(vadim): I doubt a string could realistically be this long
return Decimal{}, fmt.Errorf("can't convert %s to decimal: fractional part too long", originalInput)
}
return Decimal{
value: dValue,
exp: int32(exp),
}, nil
}
// NewFromFormattedString returns a new Decimal from a formatted string representation.
// The second argument - replRegexp, is a regular expression that is used to find characters that should be
// removed from given decimal string representation. All matched characters will be replaced with an empty string.
//
// Example:
//
// r := regexp.MustCompile("[$,]")
// d1, err := NewFromFormattedString("$5,125.99", r)
//
// r2 := regexp.MustCompile("[_]")
// d2, err := NewFromFormattedString("1_000_000", r2)
//
// r3 := regexp.MustCompile("[USD\\s]")
// d3, err := NewFromFormattedString("5000 USD", r3)
func NewFromFormattedString(value string, replRegexp *regexp.Regexp) (Decimal, error) {
parsedValue := replRegexp.ReplaceAllString(value, "")
d, err := NewFromString(parsedValue)
if err != nil {
return Decimal{}, err
}
return d, nil
}
// RequireFromString returns a new Decimal from a string representation
// or panics if NewFromString had returned an error.
//
// Example:
//
// d := RequireFromString("-123.45")
// d2 := RequireFromString(".0001")
func RequireFromString(value string) Decimal {
dec, err := NewFromString(value)
if err != nil {
panic(err)
}
return dec
}
// NewFromFloat converts a float64 to Decimal.
//
// The converted number will contain the number of significant digits that can be
// represented in a float with reliable roundtrip.
// This is typically 15 digits, but may be more in some cases.
// See https://www.exploringbinary.com/decimal-precision-of-binary-floating-point-numbers/ for more information.
//
// For slightly faster conversion, use NewFromFloatWithExponent where you can specify the precision in absolute terms.
//
// NOTE: this will panic on NaN, +/-inf
func NewFromFloat(value float64) Decimal {
if value == 0 {
return New(0, 0)
}
return newFromFloat(value, math.Float64bits(value), &float64info)
}
// NewFromFloat32 converts a float32 to Decimal.
//
// The converted number will contain the number of significant digits that can be
// represented in a float with reliable roundtrip.
// This is typically 6-8 digits depending on the input.
// See https://www.exploringbinary.com/decimal-precision-of-binary-floating-point-numbers/ for more information.
//
// For slightly faster conversion, use NewFromFloatWithExponent where you can specify the precision in absolute terms.
//
// NOTE: this will panic on NaN, +/-inf
func NewFromFloat32(value float32) Decimal {
if value == 0 {
return New(0, 0)
}
// XOR is workaround for https://github.com/golang/go/issues/26285
a := math.Float32bits(value) ^ 0x80808080
return newFromFloat(float64(value), uint64(a)^0x80808080, &float32info)
}
func newFromFloat(val float64, bits uint64, flt *floatInfo) Decimal {
if math.IsNaN(val) || math.IsInf(val, 0) {
panic(fmt.Sprintf("Cannot create a Decimal from %v", val))
}
exp := int(bits>>flt.mantbits) & (1<<flt.expbits - 1)
mant := bits & (uint64(1)<<flt.mantbits - 1)
switch exp {
case 0:
// denormalized
exp++
default:
// add implicit top bit
mant |= uint64(1) << flt.mantbits
}
exp += flt.bias
var d decimal
d.Assign(mant)
d.Shift(exp - int(flt.mantbits))
d.neg = bits>>(flt.expbits+flt.mantbits) != 0
roundShortest(&d, mant, exp, flt)
// If less than 19 digits, we can do calculation in an int64.
if d.nd < 19 {
tmp := int64(0)
m := int64(1)
for i := d.nd - 1; i >= 0; i-- {
tmp += m * int64(d.d[i]-'0')
m *= 10
}
if d.neg {
tmp *= -1
}
return Decimal{value: big.NewInt(tmp), exp: int32(d.dp) - int32(d.nd)}
}
dValue := new(big.Int)
dValue, ok := dValue.SetString(string(d.d[:d.nd]), 10)
if ok {
return Decimal{value: dValue, exp: int32(d.dp) - int32(d.nd)}
}
return NewFromFloatWithExponent(val, int32(d.dp)-int32(d.nd))
}
// NewFromFloatWithExponent converts a float64 to Decimal, with an arbitrary
// number of fractional digits.
//
// Example:
//
// NewFromFloatWithExponent(123.456, -2).String() // output: "123.46"
func NewFromFloatWithExponent(value float64, exp int32) Decimal {
if math.IsNaN(value) || math.IsInf(value, 0) {
panic(fmt.Sprintf("Cannot create a Decimal from %v", value))
}
bits := math.Float64bits(value)
mant := bits & (1<<52 - 1)
exp2 := int32((bits >> 52) & (1<<11 - 1))
sign := bits >> 63
if exp2 == 0 {
// specials
if mant == 0 {
return Decimal{}
}
// subnormal
exp2++
} else {
// normal
mant |= 1 << 52
}
exp2 -= 1023 + 52
// normalizing base-2 values
for mant&1 == 0 {
mant = mant >> 1
exp2++
}
// maximum number of fractional base-10 digits to represent 2^N exactly cannot be more than -N if N<0
if exp < 0 && exp < exp2 {
if exp2 < 0 {
exp = exp2
} else {
exp = 0
}
}
// representing 10^M * 2^N as 5^M * 2^(M+N)
exp2 -= exp
temp := big.NewInt(1)
dMant := big.NewInt(int64(mant))
// applying 5^M
if exp > 0 {
temp = temp.SetInt64(int64(exp))
temp = temp.Exp(fiveInt, temp, nil)
} else if exp < 0 {
temp = temp.SetInt64(-int64(exp))
temp = temp.Exp(fiveInt, temp, nil)
dMant = dMant.Mul(dMant, temp)
temp = temp.SetUint64(1)
}
// applying 2^(M+N)
if exp2 > 0 {
dMant = dMant.Lsh(dMant, uint(exp2))
} else if exp2 < 0 {
temp = temp.Lsh(temp, uint(-exp2))
}
// rounding and downscaling
if exp > 0 || exp2 < 0 {
halfDown := new(big.Int).Rsh(temp, 1)
dMant = dMant.Add(dMant, halfDown)
dMant = dMant.Quo(dMant, temp)
}
if sign == 1 {
dMant = dMant.Neg(dMant)
}
return Decimal{
value: dMant,
exp: exp,
}
}
// Copy returns a copy of decimal with the same value and exponent, but a different pointer to value.
func (d Decimal) Copy() Decimal {
d.ensureInitialized()
return Decimal{
value: new(big.Int).Set(d.value),
exp: d.exp,
}
}
// rescale returns a rescaled version of the decimal. Returned
// decimal may be less precise if the given exponent is bigger
// than the initial exponent of the Decimal.
// NOTE: this will truncate, NOT round
//
// Example:
//
// d := New(12345, -4)
// d2 := d.rescale(-1)
// d3 := d2.rescale(-4)
// println(d1)
// println(d2)
// println(d3)
//
// Output:
//
// 1.2345
// 1.2
// 1.2000
func (d Decimal) rescale(exp int32) Decimal {
d.ensureInitialized()
if d.exp == exp {
return Decimal{
new(big.Int).Set(d.value),
d.exp,
}
}
// NOTE(vadim): must convert exps to float64 before - to prevent overflow
diff := math.Abs(float64(exp) - float64(d.exp))
value := new(big.Int).Set(d.value)
expScale := new(big.Int).Exp(tenInt, big.NewInt(int64(diff)), nil)
if exp > d.exp {
value = value.Quo(value, expScale)
} else if exp < d.exp {
value = value.Mul(value, expScale)
}
return Decimal{
value: value,
exp: exp,
}
}
// Abs returns the absolute value of the decimal.
func (d Decimal) Abs() Decimal {
if !d.IsNegative() {
return d
}
d.ensureInitialized()
d2Value := new(big.Int).Abs(d.value)
return Decimal{
value: d2Value,
exp: d.exp,
}
}
// Add returns d + d2.
func (d Decimal) Add(d2 Decimal) Decimal {
rd, rd2 := RescalePair(d, d2)
d3Value := new(big.Int).Add(rd.value, rd2.value)
return Decimal{
value: d3Value,
exp: rd.exp,
}
}
// Sub returns d - d2.
func (d Decimal) Sub(d2 Decimal) Decimal {
rd, rd2 := RescalePair(d, d2)
d3Value := new(big.Int).Sub(rd.value, rd2.value)
return Decimal{
value: d3Value,
exp: rd.exp,
}
}
// Neg returns -d.
func (d Decimal) Neg() Decimal {
d.ensureInitialized()
val := new(big.Int).Neg(d.value)
return Decimal{
value: val,
exp: d.exp,
}
}
// Mul returns d * d2.
func (d Decimal) Mul(d2 Decimal) Decimal {
d.ensureInitialized()
d2.ensureInitialized()
expInt64 := int64(d.exp) + int64(d2.exp)
if expInt64 > math.MaxInt32 || expInt64 < math.MinInt32 {
// NOTE(vadim): better to panic than give incorrect results, as
// Decimals are usually used for money
panic(fmt.Sprintf("exponent %v overflows an int32!", expInt64))
}
d3Value := new(big.Int).Mul(d.value, d2.value)
return Decimal{
value: d3Value,
exp: int32(expInt64),
}
}
// Shift shifts the decimal in base 10.
// It shifts left when shift is positive and right if shift is negative.
// In simpler terms, the given value for shift is added to the exponent
// of the decimal.
func (d Decimal) Shift(shift int32) Decimal {
d.ensureInitialized()
return Decimal{
value: new(big.Int).Set(d.value),
exp: d.exp + shift,
}
}
// Div returns d / d2. If it doesn't divide exactly, the result will have
// DivisionPrecision digits after the decimal point.
func (d Decimal) Div(d2 Decimal) Decimal {
return d.DivRound(d2, int32(DivisionPrecision))
}
// QuoRem does division with remainder
// d.QuoRem(d2,precision) returns quotient q and remainder r such that
//
// d = d2 * q + r, q an integer multiple of 10^(-precision)
// 0 <= r < abs(d2) * 10 ^(-precision) if d>=0
// 0 >= r > -abs(d2) * 10 ^(-precision) if d<0
//
// Note that precision<0 is allowed as input.
func (d Decimal) QuoRem(d2 Decimal, precision int32) (Decimal, Decimal) {
d.ensureInitialized()
d2.ensureInitialized()
if d2.value.Sign() == 0 {
panic("decimal division by 0")
}
scale := -precision
e := int64(d.exp) - int64(d2.exp) - int64(scale)
if e > math.MaxInt32 || e < math.MinInt32 {
panic("overflow in decimal QuoRem")
}
var aa, bb, expo big.Int
var scalerest int32
// d = a 10^ea
// d2 = b 10^eb
if e < 0 {
aa = *d.value
expo.SetInt64(-e)
bb.Exp(tenInt, &expo, nil)
bb.Mul(d2.value, &bb)
scalerest = d.exp
// now aa = a
// bb = b 10^(scale + eb - ea)
} else {
expo.SetInt64(e)
aa.Exp(tenInt, &expo, nil)
aa.Mul(d.value, &aa)
bb = *d2.value
scalerest = scale + d2.exp
// now aa = a ^ (ea - eb - scale)
// bb = b
}
var q, r big.Int
q.QuoRem(&aa, &bb, &r)
dq := Decimal{value: &q, exp: scale}
dr := Decimal{value: &r, exp: scalerest}
return dq, dr
}
// DivRound divides and rounds to a given precision
// i.e. to an integer multiple of 10^(-precision)
//
// for a positive quotient digit 5 is rounded up, away from 0
// if the quotient is negative then digit 5 is rounded down, away from 0
//
// Note that precision<0 is allowed as input.
func (d Decimal) DivRound(d2 Decimal, precision int32) Decimal {
// QuoRem already checks initialization
q, r := d.QuoRem(d2, precision)
// the actual rounding decision is based on comparing r*10^precision and d2/2
// instead compare 2 r 10 ^precision and d2
var rv2 big.Int
rv2.Abs(r.value)
rv2.Lsh(&rv2, 1)
// now rv2 = abs(r.value) * 2
r2 := Decimal{value: &rv2, exp: r.exp + precision}
// r2 is now 2 * r * 10 ^ precision
var c = r2.Cmp(d2.Abs())
if c < 0 {
return q
}
if d.value.Sign()*d2.value.Sign() < 0 {
return q.Sub(New(1, -precision))
}
return q.Add(New(1, -precision))
}
// Mod returns d % d2.
func (d Decimal) Mod(d2 Decimal) Decimal {
_, r := d.QuoRem(d2, 0)
return r
}
// Pow returns d to the power of d2.
// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
//
// Pow returns 0 (zero-value of Decimal) instead of error for power operation edge cases, to handle those edge cases use PowWithPrecision
// Edge cases not handled by Pow:
// - 0 ** 0 => undefined value
// - 0 ** y, where y < 0 => infinity
// - x ** y, where x < 0 and y is non-integer decimal => imaginary value
//
// Example:
//
// d1 := decimal.NewFromFloat(4.0)
// d2 := decimal.NewFromFloat(4.0)
// res1 := d1.Pow(d2)
// res1.String() // output: "256"
//
// d3 := decimal.NewFromFloat(5.0)
// d4 := decimal.NewFromFloat(5.73)
// res2 := d3.Pow(d4)
// res2.String() // output: "10118.08037125"
func (d Decimal) Pow(d2 Decimal) Decimal {
baseSign := d.Sign()
expSign := d2.Sign()
if baseSign == 0 {
if expSign == 0 {
return Decimal{}
}
if expSign == 1 {
return Decimal{zeroInt, 0}
}
if expSign == -1 {
return Decimal{}
}
}
if expSign == 0 {
return Decimal{oneInt, 0}
}
// TODO: optimize extraction of fractional part
one := Decimal{oneInt, 0}
expIntPart, expFracPart := d2.QuoRem(one, 0)
if baseSign == -1 && !expFracPart.IsZero() {
return Decimal{}
}
intPartPow, _ := d.PowBigInt(expIntPart.value)
// if exponent is an integer we don't need to calculate d1**frac(d2)
if expFracPart.value.Sign() == 0 {
return intPartPow
}
// TODO: optimize NumDigits for more performant precision adjustment
digitsBase := d.NumDigits()
digitsExponent := d2.NumDigits()
precision := digitsBase
if digitsExponent > precision {
precision += digitsExponent
}
precision += 6
// Calculate x ** frac(y), where
// x ** frac(y) = exp(ln(x ** frac(y)) = exp(ln(x) * frac(y))
fracPartPow, err := d.Abs().Ln(-d.exp + int32(precision))
if err != nil {
return Decimal{}
}
fracPartPow = fracPartPow.Mul(expFracPart)
fracPartPow, err = fracPartPow.ExpTaylor(-d.exp + int32(precision))
if err != nil {
return Decimal{}
}
// Join integer and fractional part,
// base ** (expBase + expFrac) = base ** expBase * base ** expFrac
res := intPartPow.Mul(fracPartPow)
return res
}
// PowWithPrecision returns d to the power of d2.
// Precision parameter specifies minimum precision of the result (digits after decimal point).
// Returned decimal is not rounded to 'precision' places after decimal point.
//
// PowWithPrecision returns error when:
// - 0 ** 0 => undefined value
// - 0 ** y, where y < 0 => infinity
// - x ** y, where x < 0 and y is non-integer decimal => imaginary value
//
// Example:
//
// d1 := decimal.NewFromFloat(4.0)
// d2 := decimal.NewFromFloat(4.0)
// res1, err := d1.PowWithPrecision(d2, 2)
// res1.String() // output: "256"
//
// d3 := decimal.NewFromFloat(5.0)
// d4 := decimal.NewFromFloat(5.73)
// res2, err := d3.PowWithPrecision(d4, 5)
// res2.String() // output: "10118.080371595015625"
//
// d5 := decimal.NewFromFloat(-3.0)
// d6 := decimal.NewFromFloat(-6.0)
// res3, err := d5.PowWithPrecision(d6, 10)
// res3.String() // output: "0.0013717421"
func (d Decimal) PowWithPrecision(d2 Decimal, precision int32) (Decimal, error) {
baseSign := d.Sign()
expSign := d2.Sign()
if baseSign == 0 {
if expSign == 0 {
return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
}
if expSign == 1 {
return Decimal{zeroInt, 0}, nil
}
if expSign == -1 {
return Decimal{}, fmt.Errorf("cannot represent infinity value of 0 ** y, where y < 0")
}
}
if expSign == 0 {
return Decimal{oneInt, 0}, nil
}
// TODO: optimize extraction of fractional part
one := Decimal{oneInt, 0}
expIntPart, expFracPart := d2.QuoRem(one, 0)
if baseSign == -1 && !expFracPart.IsZero() {
return Decimal{}, fmt.Errorf("cannot represent imaginary value of x ** y, where x < 0 and y is non-integer decimal")
}
intPartPow, _ := d.powBigIntWithPrecision(expIntPart.value, precision)
// if exponent is an integer we don't need to calculate d1**frac(d2)
if expFracPart.value.Sign() == 0 {
return intPartPow, nil
}
// TODO: optimize NumDigits for more performant precision adjustment
digitsBase := d.NumDigits()
digitsExponent := d2.NumDigits()
if int32(digitsBase) > precision {
precision = int32(digitsBase)
}
if int32(digitsExponent) > precision {
precision += int32(digitsExponent)
}
// increase precision by 10 to compensate for errors in further calculations
precision += 10
// Calculate x ** frac(y), where
// x ** frac(y) = exp(ln(x ** frac(y)) = exp(ln(x) * frac(y))
fracPartPow, err := d.Abs().Ln(precision)
if err != nil {
return Decimal{}, err
}
fracPartPow = fracPartPow.Mul(expFracPart)
fracPartPow, err = fracPartPow.ExpTaylor(precision)
if err != nil {
return Decimal{}, err
}
// Join integer and fractional part,
// base ** (expBase + expFrac) = base ** expBase * base ** expFrac
res := intPartPow.Mul(fracPartPow)
return res, nil
}
// PowInt32 returns d to the power of exp, where exp is int32.
// Only returns error when d and exp is 0, thus result is undefined.
//
// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
//
// Example:
//
// d1, err := decimal.NewFromFloat(4.0).PowInt32(4)
// d1.String() // output: "256"
//
// d2, err := decimal.NewFromFloat(3.13).PowInt32(5)
// d2.String() // output: "300.4150512793"
func (d Decimal) PowInt32(exp int32) (Decimal, error) {
if d.IsZero() && exp == 0 {
return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
}
isExpNeg := exp < 0
exp = abs(exp)
n, result := d, New(1, 0)
for exp > 0 {
if exp%2 == 1 {
result = result.Mul(n)
}
exp /= 2
if exp > 0 {
n = n.Mul(n)
}
}
if isExpNeg {
return New(1, 0).DivRound(result, int32(PowPrecisionNegativeExponent)), nil
}
return result, nil
}
// PowBigInt returns d to the power of exp, where exp is big.Int.
// Only returns error when d and exp is 0, thus result is undefined.
//
// When exponent is negative the returned decimal will have maximum precision of PowPrecisionNegativeExponent places after decimal point.
//
// Example:
//
// d1, err := decimal.NewFromFloat(3.0).PowBigInt(big.NewInt(3))
// d1.String() // output: "27"
//
// d2, err := decimal.NewFromFloat(629.25).PowBigInt(big.NewInt(5))
// d2.String() // output: "98654323103449.5673828125"
func (d Decimal) PowBigInt(exp *big.Int) (Decimal, error) {
return d.powBigIntWithPrecision(exp, int32(PowPrecisionNegativeExponent))
}
func (d Decimal) powBigIntWithPrecision(exp *big.Int, precision int32) (Decimal, error) {
if d.IsZero() && exp.Sign() == 0 {
return Decimal{}, fmt.Errorf("cannot represent undefined value of 0**0")
}
tmpExp := new(big.Int).Set(exp)
isExpNeg := exp.Sign() < 0
if isExpNeg {
tmpExp.Abs(tmpExp)
}
n, result := d, New(1, 0)
for tmpExp.Sign() > 0 {
if tmpExp.Bit(0) == 1 {
result = result.Mul(n)
}
tmpExp.Rsh(tmpExp, 1)
if tmpExp.Sign() > 0 {
n = n.Mul(n)
}
}
if isExpNeg {
return New(1, 0).DivRound(result, precision), nil
}
return result, nil
}
// ExpHullAbrham calculates the natural exponent of decimal (e to the power of d) using Hull-Abraham algorithm.
// OverallPrecision argument specifies the overall precision of the result (integer part + decimal part).
//
// ExpHullAbrham is faster than ExpTaylor for small precision values, but it is much slower for large precision values.
//
// Example:
//
// NewFromFloat(26.1).ExpHullAbrham(2).String() // output: "220000000000"
// NewFromFloat(26.1).ExpHullAbrham(20).String() // output: "216314672147.05767284"
func (d Decimal) ExpHullAbrham(overallPrecision uint32) (Decimal, error) {
// Algorithm based on Variable precision exponential function.
// ACM Transactions on Mathematical Software by T. E. Hull & A. Abrham.
if d.IsZero() {
return Decimal{oneInt, 0}, nil
}
currentPrecision := overallPrecision
// Algorithm does not work if currentPrecision * 23 < |x|.
// Precision is automatically increased in such cases, so the value can be calculated precisely.
// If newly calculated precision is higher than ExpMaxIterations the currentPrecision will not be changed.
f := d.Abs().InexactFloat64()
if ncp := f / 23; ncp > float64(currentPrecision) && ncp < float64(ExpMaxIterations) {
currentPrecision = uint32(math.Ceil(ncp))
}
// fail if abs(d) beyond an over/underflow threshold
overflowThreshold := New(23*int64(currentPrecision), 0)
if d.Abs().Cmp(overflowThreshold) > 0 {
return Decimal{}, fmt.Errorf("over/underflow threshold, exp(x) cannot be calculated precisely")
}
// Return 1 if abs(d) small enough; this also avoids later over/underflow
overflowThreshold2 := New(9, -int32(currentPrecision)-1)
if d.Abs().Cmp(overflowThreshold2) <= 0 {
return Decimal{oneInt, d.exp}, nil
}
// t is the smallest integer >= 0 such that the corresponding abs(d/k) < 1
t := d.exp + int32(d.NumDigits()) // Add d.NumDigits because the paper assumes that d.value [0.1, 1)
if t < 0 {
t = 0
}
k := New(1, t) // reduction factor
r := Decimal{new(big.Int).Set(d.value), d.exp - t} // reduced argument
p := int32(currentPrecision) + t + 2 // precision for calculating the sum
// Determine n, the number of therms for calculating sum
// use first Newton step (1.435p - 1.182) / log10(p/abs(r))
// for solving appropriate equation, along with directed
// roundings and simple rational bound for log10(p/abs(r))