-
Notifications
You must be signed in to change notification settings - Fork 99
/
data-description.html
548 lines (534 loc) · 19.9 KB
/
data-description.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
<!DOCTYPE html>
<html lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<title>Chapter 17 Data description | Machine Learning for Factor Investing</title>
<meta name="author" content="Guillaume Coqueret and Tony Guida">
<meta name="generator" content="bookdown 0.24 with bs4_book()">
<meta property="og:title" content="Chapter 17 Data description | Machine Learning for Factor Investing">
<meta property="og:type" content="book">
<meta name="twitter:card" content="summary">
<meta name="twitter:title" content="Chapter 17 Data description | Machine Learning for Factor Investing">
<!-- JS --><script src="https://cdnjs.cloudflare.com/ajax/libs/clipboard.js/2.0.6/clipboard.min.js" integrity="sha256-inc5kl9MA1hkeYUt+EC3BhlIgyp/2jDIyBLS6k3UxPI=" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/fuse.js/6.4.6/fuse.js" integrity="sha512-zv6Ywkjyktsohkbp9bb45V6tEMoWhzFzXis+LrMehmJZZSys19Yxf1dopHx7WzIKxr5tK2dVcYmaCk2uqdjF4A==" crossorigin="anonymous"></script><script src="https://kit.fontawesome.com/6ecbd6c532.js" crossorigin="anonymous"></script><script src="libs/header-attrs-2.11/header-attrs.js"></script><script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script><meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<link href="libs/bootstrap-4.6.0/bootstrap.min.css" rel="stylesheet">
<script src="libs/bootstrap-4.6.0/bootstrap.bundle.min.js"></script><script src="libs/bs3compat-0.3.1/transition.js"></script><script src="libs/bs3compat-0.3.1/tabs.js"></script><script src="libs/bs3compat-0.3.1/bs3compat.js"></script><link href="libs/bs4_book-1.0.0/bs4_book.css" rel="stylesheet">
<script src="libs/bs4_book-1.0.0/bs4_book.js"></script><script src="libs/kePrint-0.0.1/kePrint.js"></script><link href="libs/lightable-0.0.1/lightable.css" rel="stylesheet">
<script src="https://cdnjs.cloudflare.com/ajax/libs/autocomplete.js/0.38.0/autocomplete.jquery.min.js" integrity="sha512-GU9ayf+66Xx2TmpxqJpliWbT5PiGYxpaG8rfnBEk1LL8l1KGkRShhngwdXK1UgqhAzWpZHSiYPc09/NwDQIGyg==" crossorigin="anonymous"></script><script src="https://cdnjs.cloudflare.com/ajax/libs/mark.js/8.11.1/mark.min.js" integrity="sha512-5CYOlHXGh6QpOFA/TeTylKLWfB3ftPsde7AnmhuitiTX4K5SqCLBeKro6sPS8ilsz1Q4NRx3v8Ko2IBiszzdww==" crossorigin="anonymous"></script><!-- CSS --><meta name="description" content="TABLE 17.1: List of all variables (features and labels) in the dataset Column Name Short Description stock_id security id date date of the data Advt_12M_Usd average daily volume in amount in USD...">
<meta property="og:description" content="TABLE 17.1: List of all variables (features and labels) in the dataset Column Name Short Description stock_id security id date date of the data Advt_12M_Usd average daily volume in amount in USD...">
<meta name="twitter:description" content="TABLE 17.1: List of all variables (features and labels) in the dataset Column Name Short Description stock_id security id date date of the data Advt_12M_Usd average daily volume in amount in USD...">
</head>
<body data-spy="scroll" data-target="#toc">
<div class="container-fluid">
<div class="row">
<header class="col-sm-12 col-lg-3 sidebar sidebar-book"><a class="sr-only sr-only-focusable" href="#content">Skip to main content</a>
<div class="d-flex align-items-start justify-content-between">
<h1>
<a href="index.html" title="">Machine Learning for Factor Investing</a>
</h1>
<button class="btn btn-outline-primary d-lg-none ml-2 mt-1" type="button" data-toggle="collapse" data-target="#main-nav" aria-expanded="true" aria-controls="main-nav"><i class="fas fa-bars"></i><span class="sr-only">Show table of contents</span></button>
</div>
<div id="main-nav" class="collapse-lg">
<form role="search">
<input id="search" class="form-control" type="search" placeholder="Search" aria-label="Search">
</form>
<nav aria-label="Table of contents"><h2>Table of contents</h2>
<ul class="book-toc list-unstyled">
<li><a class="" href="index.html">Preface</a></li>
<li class="book-part">Introduction</li>
<li><a class="" href="notdata.html"><span class="header-section-number">1</span> Notations and data</a></li>
<li><a class="" href="intro.html"><span class="header-section-number">2</span> Introduction</a></li>
<li><a class="" href="factor.html"><span class="header-section-number">3</span> Factor investing and asset pricing anomalies</a></li>
<li><a class="" href="Data.html"><span class="header-section-number">4</span> Data preprocessing</a></li>
<li class="book-part">Common supervised algorithms</li>
<li><a class="" href="lasso.html"><span class="header-section-number">5</span> Penalized regressions and sparse hedging for minimum variance portfolios</a></li>
<li><a class="" href="trees.html"><span class="header-section-number">6</span> Tree-based methods</a></li>
<li><a class="" href="NN.html"><span class="header-section-number">7</span> Neural networks</a></li>
<li><a class="" href="svm.html"><span class="header-section-number">8</span> Support vector machines</a></li>
<li><a class="" href="bayes.html"><span class="header-section-number">9</span> Bayesian methods</a></li>
<li class="book-part">From predictions to portfolios</li>
<li><a class="" href="valtune.html"><span class="header-section-number">10</span> Validating and tuning</a></li>
<li><a class="" href="ensemble.html"><span class="header-section-number">11</span> Ensemble models</a></li>
<li><a class="" href="backtest.html"><span class="header-section-number">12</span> Portfolio backtesting</a></li>
<li class="book-part">Further important topics</li>
<li><a class="" href="interp.html"><span class="header-section-number">13</span> Interpretability</a></li>
<li><a class="" href="causality.html"><span class="header-section-number">14</span> Two key concepts: causality and non-stationarity</a></li>
<li><a class="" href="unsup.html"><span class="header-section-number">15</span> Unsupervised learning</a></li>
<li><a class="" href="RL.html"><span class="header-section-number">16</span> Reinforcement learning</a></li>
<li class="book-part">Appendix</li>
<li><a class="active" href="data-description.html"><span class="header-section-number">17</span> Data description</a></li>
<li><a class="" href="python.html"><span class="header-section-number">18</span> Python notebooks</a></li>
<li><a class="" href="solutions-to-exercises.html"><span class="header-section-number">19</span> Solutions to exercises</a></li>
</ul>
<div class="book-extra">
</div>
</nav>
</div>
</header><main class="col-sm-12 col-md-9 col-lg-7" id="content"><div id="data-description" class="section level1" number="17">
<h1>
<span class="header-section-number">17</span> Data description<a class="anchor" aria-label="anchor" href="#data-description"><i class="fas fa-link"></i></a>
</h1>
<div class="inline-table"><table class="table table-sm">
<caption>
<span id="tab:appendix1">TABLE 17.1: </span> List of all variables (features and labels) in the dataset</caption>
<colgroup>
<col width="50%">
<col width="50%">
</colgroup>
<thead><tr class="header">
<th align="left"><strong>Column Name</strong></th>
<th align="left"><strong>Short Description</strong></th>
</tr></thead>
<tbody>
<tr class="odd">
<td align="left">stock_id</td>
<td align="left">security id</td>
</tr>
<tr class="even">
<td align="left">date</td>
<td align="left">date of the data</td>
</tr>
<tr class="odd">
<td align="left">Advt_12M_Usd</td>
<td align="left">average daily volume in amount in USD over 12 months</td>
</tr>
<tr class="even">
<td align="left">Advt_3M_Usd</td>
<td align="left">average daily volume in amount in USD over 3 months</td>
</tr>
<tr class="odd">
<td align="left">Advt_6M_Usd</td>
<td align="left">average daily volume in amount in USD over 6 months</td>
</tr>
<tr class="even">
<td align="left">Asset_Turnover</td>
<td align="left">total sales on average assets</td>
</tr>
<tr class="odd">
<td align="left">Bb_Yld</td>
<td align="left">buyback yield</td>
</tr>
<tr class="even">
<td align="left">Bv</td>
<td align="left">book value</td>
</tr>
<tr class="odd">
<td align="left">Capex_Ps_Cf</td>
<td align="left">capital expenditure on price to sale cash flow</td>
</tr>
<tr class="even">
<td align="left">Capex_Sales</td>
<td align="left">capital expenditure on sales</td>
</tr>
<tr class="odd">
<td align="left">Cash_Div_Cf</td>
<td align="left">cash dividends cash flow</td>
</tr>
<tr class="even">
<td align="left">Cash_Per_Share</td>
<td align="left">cash per share</td>
</tr>
<tr class="odd">
<td align="left">Cf_Sales</td>
<td align="left">cash flow per share</td>
</tr>
<tr class="even">
<td align="left">Debtequity</td>
<td align="left">debt to equity</td>
</tr>
<tr class="odd">
<td align="left">Div_Yld</td>
<td align="left">dividend yield</td>
</tr>
<tr class="even">
<td align="left">Dps</td>
<td align="left">dividend per share</td>
</tr>
<tr class="odd">
<td align="left">Ebit_Bv</td>
<td align="left">EBIT on book value</td>
</tr>
<tr class="even">
<td align="left">Ebit_Noa</td>
<td align="left">EBIT on non operating asset</td>
</tr>
<tr class="odd">
<td align="left">Ebit_Oa</td>
<td align="left">EBIT on operating asset</td>
</tr>
<tr class="even">
<td align="left">Ebit_Ta</td>
<td align="left">EBIT on total asset</td>
</tr>
<tr class="odd">
<td align="left">Ebitda_Margin</td>
<td align="left">EBITDA margin</td>
</tr>
<tr class="even">
<td align="left">Eps</td>
<td align="left">earnings per share</td>
</tr>
<tr class="odd">
<td align="left">Eps_Basic</td>
<td align="left">earnings per share basic</td>
</tr>
<tr class="even">
<td align="left">Eps_Basic_Gr</td>
<td align="left">earnings per share growth</td>
</tr>
<tr class="odd">
<td align="left">Eps_Contin_Oper</td>
<td align="left">earnings per share continuing operations</td>
</tr>
<tr class="even">
<td align="left">Eps_Dil</td>
<td align="left">earnings per share diluted</td>
</tr>
<tr class="odd">
<td align="left">Ev</td>
<td align="left">enterprise value</td>
</tr>
<tr class="even">
<td align="left">Ev_Ebitda</td>
<td align="left">enterprise value on EBITDA</td>
</tr>
<tr class="odd">
<td align="left">Fa_Ci</td>
<td align="left">fixed assets on common equity</td>
</tr>
<tr class="even">
<td align="left">Fcf</td>
<td align="left">free cash flow</td>
</tr>
<tr class="odd">
<td align="left">Fcf_Bv</td>
<td align="left">free cash flow on book value</td>
</tr>
<tr class="even">
<td align="left">Fcf_Ce</td>
<td align="left">free cash flow on capital employed</td>
</tr>
<tr class="odd">
<td align="left">Fcf_Margin</td>
<td align="left">free cash flow margin</td>
</tr>
<tr class="even">
<td align="left">Fcf_Noa</td>
<td align="left">free cash flow on net operating assets</td>
</tr>
<tr class="odd">
<td align="left">Fcf_Oa</td>
<td align="left">free cash flow on operating assets</td>
</tr>
<tr class="even">
<td align="left">Fcf_Ta</td>
<td align="left">free cash flow on total assets</td>
</tr>
<tr class="odd">
<td align="left">Fcf_Tbv</td>
<td align="left">free cash flow on tangible book value</td>
</tr>
<tr class="even">
<td align="left">Fcf_Toa</td>
<td align="left">free cash flow on total operating assets</td>
</tr>
<tr class="odd">
<td align="left">Fcf_Yld</td>
<td align="left">free cash flow yield</td>
</tr>
<tr class="even">
<td align="left">Free_Ps_Cf</td>
<td align="left">free cash flow on price sales</td>
</tr>
<tr class="odd">
<td align="left">Int_Rev</td>
<td align="left">intangibles on revenues</td>
</tr>
<tr class="even">
<td align="left">Interest_Expense</td>
<td align="left">interest expense coverage</td>
</tr>
<tr class="odd">
<td align="left">Mkt_Cap_12M_Usd</td>
<td align="left">average market capitalization over 12 months in USD</td>
</tr>
<tr class="even">
<td align="left">Mkt_Cap_3M_Usd</td>
<td align="left">average market capitalization over 3 months in USD</td>
</tr>
<tr class="odd">
<td align="left">Mkt_Cap_6M_Usd</td>
<td align="left">average market capitalization over 6 months in USD</td>
</tr>
<tr class="even">
<td align="left">Mom_11M_Usd</td>
<td align="left">price momentum 12 - 1 months in USD</td>
</tr>
<tr class="odd">
<td align="left">Mom_5M_Usd</td>
<td align="left">price momentum 6 - 1 months in USD</td>
</tr>
<tr class="even">
<td align="left">Mom_Sharp_11M_Usd</td>
<td align="left">price momentum 12 - 1 months in USD divided by volatility</td>
</tr>
<tr class="odd">
<td align="left">Mom_Sharp_5M_Usd</td>
<td align="left">price momentum 6 - 1 months in USD divided by volatility</td>
</tr>
<tr class="even">
<td align="left">Nd_Ebitda</td>
<td align="left">net debt on EBITDA</td>
</tr>
<tr class="odd">
<td align="left">Net_Debt</td>
<td align="left">net debt</td>
</tr>
<tr class="even">
<td align="left">Net_Debt_Cf</td>
<td align="left">net debt on cash flow</td>
</tr>
<tr class="odd">
<td align="left">Net_Margin</td>
<td align="left">net margin</td>
</tr>
<tr class="even">
<td align="left">Netdebtyield</td>
<td align="left">net debt yield</td>
</tr>
<tr class="odd">
<td align="left">Ni</td>
<td align="left">net income</td>
</tr>
<tr class="even">
<td align="left">Ni_Avail_Margin</td>
<td align="left">net income available margin</td>
</tr>
<tr class="odd">
<td align="left">Ni_Oa</td>
<td align="left">net income on operating asset</td>
</tr>
<tr class="even">
<td align="left">Ni_Toa</td>
<td align="left">net income on total operating asset</td>
</tr>
<tr class="odd">
<td align="left">Noa</td>
<td align="left">net operating asset</td>
</tr>
<tr class="even">
<td align="left">Oa</td>
<td align="left">operating asset</td>
</tr>
<tr class="odd">
<td align="left">Ocf</td>
<td align="left">operating cash flow</td>
</tr>
<tr class="even">
<td align="left">Ocf_Bv</td>
<td align="left">operating cash flow on book value</td>
</tr>
<tr class="odd">
<td align="left">Ocf_Ce</td>
<td align="left">operating cash flow on capital employed</td>
</tr>
<tr class="even">
<td align="left">Ocf_Margin</td>
<td align="left">operating cash flow margin</td>
</tr>
<tr class="odd">
<td align="left">Ocf_Noa</td>
<td align="left">operating cash flow on net operating assets</td>
</tr>
<tr class="even">
<td align="left">Ocf_Oa</td>
<td align="left">operating cash flow on operating assets</td>
</tr>
<tr class="odd">
<td align="left">Ocf_Ta</td>
<td align="left">operating cash flow on total assets</td>
</tr>
<tr class="even">
<td align="left">Ocf_Tbv</td>
<td align="left">operating cash flow on tangible book value</td>
</tr>
<tr class="odd">
<td align="left">Ocf_Toa</td>
<td align="left">operating cash flow on total operating assets</td>
</tr>
<tr class="even">
<td align="left">Op_Margin</td>
<td align="left">operating margin</td>
</tr>
<tr class="odd">
<td align="left">Op_Prt_Margin</td>
<td align="left">net margin 1Y growth</td>
</tr>
<tr class="even">
<td align="left">Oper_Ps_Net_Cf</td>
<td align="left">cash flow from operations per share net</td>
</tr>
<tr class="odd">
<td align="left">Pb</td>
<td align="left">price to book</td>
</tr>
<tr class="even">
<td align="left">Pe</td>
<td align="left">price earnings</td>
</tr>
<tr class="odd">
<td align="left">Ptx_Mgn</td>
<td align="left">margin pretax</td>
</tr>
<tr class="even">
<td align="left">Recurring_Earning_Total_Assets</td>
<td align="left">reccuring earnings on total assets</td>
</tr>
<tr class="odd">
<td align="left">Return_On_Capital</td>
<td align="left">return on capital</td>
</tr>
<tr class="even">
<td align="left">Rev</td>
<td align="left">revenue</td>
</tr>
<tr class="odd">
<td align="left">Roa</td>
<td align="left">return on assets</td>
</tr>
<tr class="even">
<td align="left">Roc</td>
<td align="left">return on capital</td>
</tr>
<tr class="odd">
<td align="left">Roce</td>
<td align="left">return on capital employed</td>
</tr>
<tr class="even">
<td align="left">Roe</td>
<td align="left">return on equity</td>
</tr>
<tr class="odd">
<td align="left">Sales_Ps</td>
<td align="left">price to sales</td>
</tr>
<tr class="even">
<td align="left">Share_Turn_12M</td>
<td align="left">average share turnover 12 months</td>
</tr>
<tr class="odd">
<td align="left">Share_Turn_3M</td>
<td align="left">average share turnover 3 months</td>
</tr>
<tr class="even">
<td align="left">Share_Turn_6M</td>
<td align="left">average share turnover 6 months</td>
</tr>
<tr class="odd">
<td align="left">Ta</td>
<td align="left">total assets</td>
</tr>
<tr class="even">
<td align="left">Tev_Less_Mktcap</td>
<td align="left">total enterprise value less market capitalization</td>
</tr>
<tr class="odd">
<td align="left">Tot_Debt_Rev</td>
<td align="left">total debt on revenue</td>
</tr>
<tr class="even">
<td align="left">Total_Capital</td>
<td align="left">total capital</td>
</tr>
<tr class="odd">
<td align="left">Total_Debt</td>
<td align="left">total debt</td>
</tr>
<tr class="even">
<td align="left">Total_Debt_Capital</td>
<td align="left">total debt on capital</td>
</tr>
<tr class="odd">
<td align="left">Total_Liabilities_Total_Assets</td>
<td align="left">total liabilities on total assets</td>
</tr>
<tr class="even">
<td align="left">Vol1Y_Usd</td>
<td align="left">volatility of returns over one year</td>
</tr>
<tr class="odd">
<td align="left">Vol3Y_Usd</td>
<td align="left">volatility of returns over 3 years</td>
</tr>
<tr class="even">
<td align="left">R1M_Usd</td>
<td align="left">return forward 1 month (<strong>LABEL</strong>)</td>
</tr>
<tr class="odd">
<td align="left">R3M_Usd</td>
<td align="left">return forward 3 months (<strong>LABEL</strong>)</td>
</tr>
<tr class="even">
<td align="left">R6M_Usd</td>
<td align="left">return forward 6 months (<strong>LABEL</strong>)</td>
</tr>
<tr class="odd">
<td align="left">R12M_Usd</td>
<td align="left">return forward 12 months (<strong>LABEL</strong>)</td>
</tr>
</tbody>
</table></div>
</div>
<div class="chapter-nav">
<div class="prev"><a href="RL.html"><span class="header-section-number">16</span> Reinforcement learning</a></div>
<div class="next"><a href="python.html"><span class="header-section-number">18</span> Python notebooks</a></div>
</div></main><div class="col-md-3 col-lg-2 d-none d-md-block sidebar sidebar-chapter">
<nav id="toc" data-toggle="toc" aria-label="On this page"><h2>On this page</h2>
<ul class="nav navbar-nav"><li><a class="nav-link" href="#data-description"><span class="header-section-number">17</span> Data description</a></li></ul>
<div class="book-extra">
<ul class="list-unstyled">
</ul>
</div>
</nav>
</div>
</div>
</div> <!-- .container -->
<footer class="bg-primary text-light mt-5"><div class="container"><div class="row">
<div class="col-12 col-md-6 mt-3">
<p>"<strong>Machine Learning for Factor Investing</strong>" was written by Guillaume Coqueret and Tony Guida. It was last built on 2022-10-18.</p>
</div>
<div class="col-12 col-md-6 mt-3">
<p>This book was built by the <a class="text-light" href="https://bookdown.org">bookdown</a> R package.</p>
</div>
</div></div>
</footer><!-- dynamically load mathjax for compatibility with self-contained --><script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://mathjax.rstudio.com/latest/MathJax.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script><script type="text/x-mathjax-config">const popovers = document.querySelectorAll('a.footnote-ref[data-toggle="popover"]');
for (let popover of popovers) {
const div = document.createElement('div');
div.setAttribute('style', 'position: absolute; top: 0, left:0; width:0, height:0, overflow: hidden; visibility: hidden;');
div.innerHTML = popover.getAttribute('data-content');
var has_math = div.querySelector("span.math");
if (has_math) {
document.body.appendChild(div);
MathJax.Hub.Queue(["Typeset", MathJax.Hub, div]);
MathJax.Hub.Queue(function() {
popover.setAttribute('data-content', div.innerHTML);
document.body.removeChild(div);
})
}
}
</script>
</body>
</html>