forked from gouthampradhan/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
MinimumSizeSubarraySum.java
56 lines (54 loc) · 1.5 KB
/
MinimumSizeSubarraySum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
package two_pointers;
/**
* Created by gouthamvidyapradhan on 03/12/2017.
*
* <p>Given an array of n positive integers and a positive integer s, find the minimal length of a
* contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead.
*
* <p>For example, given the array [2,3,1,2,4,3] and s = 7, the subarray [4,3] has the minimal
* length under the problem constraint.
*
* <p>click to show more practice.
*
* <p>Credits: Special thanks to @Freezen for adding this problem and creating all test cases.
*
* <p>Solution: O(n) solution. Solve using sliding window sub-array sum using two pointers.
*/
public class MinimumSizeSubarraySum {
/**
* Main method
*
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
int[] nums = {2, 3, 1, 2, 4, 3};
System.out.println(new MinimumSizeSubarraySum().minSubArrayLen(7, nums));
}
public int minSubArrayLen(int s, int[] nums) {
int sum = 0, count = 0, min = Integer.MAX_VALUE;
for (int i = 0, j = 0; j < nums.length; ) {
if (nums[j] >= s) {
return 1;
} else {
sum += nums[j];
count++;
if (sum >= s) {
min = Math.min(min, count);
while (j > i) {
sum -= nums[i];
count--;
i++;
if (sum < s) break;
min = Math.min(min, count);
}
}
}
j++;
}
if (min == Integer.MAX_VALUE) {
return 0;
}
return min;
}
}