-
Notifications
You must be signed in to change notification settings - Fork 22
/
visualize_seldnet_output.py
120 lines (99 loc) · 4.98 KB
/
visualize_seldnet_output.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
#
# A wrapper script that trains the SELDnet. The training stops when the early stopping metric - SELD error stops improving.
#
import numpy as np
import os
import sys
import cls_data_generator
import seldnet_model
import parameters
import torch
from IPython import embed
import matplotlib
matplotlib.use('Agg')
#matplotlib.use('TkAgg')
import matplotlib.pyplot as plot
plot.rcParams.update({'font.size': 22})
def main(argv):
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
# use parameter set defined by user
task_id = '1' if len(argv) < 2 else argv[1]
params = parameters.get_params(task_id)
print('\nLoading the best model and predicting results on the testing split')
print('\tLoading testing dataset:')
data_gen_test = cls_data_generator.DataGenerator(
params=params, split=1, shuffle=False, is_eval=True if params['mode']=='eval' else False
)
data_in, data_out = data_gen_test.get_data_sizes()
dump_figures = True
# CHOOSE THE MODEL WHOSE OUTPUT YOU WANT TO VISUALIZE
checkpoint_name = "models/1_1_foa_dev_split6_model.h5"
model = seldnet_model.CRNN(data_in, data_out, params)
model.eval()
model.load_state_dict(torch.load(checkpoint_name, map_location=torch.device('cpu')))
model = model.to(device)
if dump_figures:
dump_folder = os.path.join('dump_dir', os.path.basename(checkpoint_name).split('.')[0])
os.makedirs(dump_folder, exist_ok=True)
with torch.no_grad():
file_cnt = 0
for data, target in data_gen_test.generate():
data, target = torch.tensor(data).to(device).float(), torch.tensor(target).to(device).float()
output = model(data)
# (batch, sequence, max_nb_doas*3) to (batch, sequence, 3, max_nb_doas)
max_nb_doas = output.shape[2]//3
output = output.view(output.shape[0], output.shape[1], 3, max_nb_doas).transpose(-1, -2)
target = target.view(target.shape[0], target.shape[1], 3, max_nb_doas).transpose(-1, -2)
# get pair-wise distance matrix between predicted and reference.
output, target = output.view(-1, output.shape[-2], output.shape[-1]), target.view(-1, target.shape[-2], target.shape[-1])
output = output.cpu().detach().numpy()
target = target.cpu().detach().numpy()
use_activity_detector = False
if use_activity_detector:
activity = (torch.sigmoid(activity_out).cpu().detach().numpy() >0.5)
mel_spec = data[0][0].cpu()
foa_iv = data[0][-1].cpu()
target[target > 1] =0
plot.figure(figsize=(20,10))
plot.subplot(321), plot.imshow(torch.transpose(mel_spec, -1, -2))
plot.subplot(322), plot.imshow(torch.transpose(foa_iv, -1, -2))
plot.subplot(323), plot.plot(target[:params['label_sequence_length'], 0, 0], 'r', lw=2)
plot.subplot(323), plot.plot(target[:params['label_sequence_length'], 0, 1], 'g', lw=2)
plot.subplot(323), plot.plot(target[:params['label_sequence_length'], 0, 2], 'b', lw=2)
plot.grid()
plot.ylim([-1.1, 1.1])
plot.subplot(324), plot.plot(target[:params['label_sequence_length'], 1, 0], 'r', lw=2)
plot.subplot(324), plot.plot(target[:params['label_sequence_length'], 1, 1], 'g', lw=2)
plot.subplot(324), plot.plot(target[:params['label_sequence_length'], 1, 2], 'b', lw=2)
plot.grid()
plot.ylim([-1.1, 1.1])
if use_activity_detector:
output[:, 0, 0:3] = activity[:, 0][:, np.newaxis]*output[:, 0, 0:3]
output[:, 1, 0:3] = activity[:, 1][:, np.newaxis]*output[:, 1, 0:3]
plot.subplot(325), plot.plot(output[:params['label_sequence_length'], 0, 0], 'r', lw=2)
plot.subplot(325), plot.plot(output[:params['label_sequence_length'], 0, 1], 'g', lw=2)
plot.subplot(325), plot.plot(output[:params['label_sequence_length'], 0, 2], 'b', lw=2)
plot.grid()
plot.ylim([-1.1, 1.1])
plot.subplot(326), plot.plot(output[:params['label_sequence_length'], 1, 0], 'r', lw=2)
plot.subplot(326), plot.plot(output[:params['label_sequence_length'], 1, 1], 'g', lw=2)
plot.subplot(326), plot.plot(output[:params['label_sequence_length'], 1, 2], 'b', lw=2)
plot.grid()
plot.ylim([-1.1, 1.1])
if dump_figures:
fig_name = '{}'.format(os.path.join(dump_folder, '{}.png'.format(file_cnt)))
print('saving figure : {}'.format(fig_name))
plot.savefig(fig_name, dpi=100)
plot.close()
file_cnt += 1
else:
plot.show()
if file_cnt>2:
break
if __name__ == "__main__":
try:
sys.exit(main(sys.argv))
except (ValueError, IOError) as e:
sys.exit(e)