-
Notifications
You must be signed in to change notification settings - Fork 18
/
cls_feature_class.py
470 lines (392 loc) · 20.7 KB
/
cls_feature_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
# Contains routines for labels creation, features extraction and normalization
#
import os
import numpy as np
import scipy.io.wavfile as wav
from sklearn import preprocessing
import joblib
from IPython import embed
import matplotlib.pyplot as plot
import librosa
plot.switch_backend('agg')
import shutil
import math
def nCr(n, r):
return math.factorial(n) // math.factorial(r) // math.factorial(n-r)
class FeatureClass:
def __init__(self, params, is_eval=False):
"""
:param params: parameters dictionary
:param is_eval: if True, does not load dataset labels.
"""
# Input directories
self._feat_label_dir = params['feat_label_dir']
self._dataset_dir = params['dataset_dir']
self._dataset_combination = '{}_{}'.format(params['dataset'], 'eval' if is_eval else 'dev')
self._aud_dir = os.path.join(self._dataset_dir, self._dataset_combination)
self._desc_dir = None if is_eval else os.path.join(self._dataset_dir, 'metadata_dev')
# Output directories
self._label_dir = None
self._feat_dir = None
self._feat_dir_norm = None
# Local parameters
self._is_eval = is_eval
self._fs = params['fs']
self._hop_len_s = params['hop_len_s']
self._hop_len = int(self._fs * self._hop_len_s)
self._label_hop_len_s = params['label_hop_len_s']
self._label_hop_len = int(self._fs * self._label_hop_len_s)
self._label_frame_res = self._fs / float(self._label_hop_len)
self._nb_label_frames_1s = int(self._label_frame_res)
self._win_len = 2 * self._hop_len
self._nfft = self._next_greater_power_of_2(self._win_len)
self._nb_mel_bins = params['nb_mel_bins']
self._mel_wts = librosa.filters.mel(sr=self._fs, n_fft=self._nfft, n_mels=self._nb_mel_bins).T
self._dataset = params['dataset']
self._eps = 1e-8
self._nb_channels = 4
# Sound event classes dictionary
self._unique_classes = params['unique_classes']
self._audio_max_len_samples = params['max_audio_len_s'] * self._fs # TODO: Fix the audio synthesis code to always generate 60s of
# audio. Currently it generates audio till the last active sound event, which is not always 60s long. This is a
# quick fix to overcome that. We need this because, for processing and training we need the length of features
# to be fixed.
self._max_feat_frames = int(np.ceil(self._audio_max_len_samples / float(self._hop_len)))
self._max_label_frames = int(np.ceil(self._audio_max_len_samples / float(self._label_hop_len)))
def _load_audio(self, audio_path):
fs, audio = wav.read(audio_path)
audio = audio[:, :self._nb_channels] / 32768.0 + self._eps
if audio.shape[0] < self._audio_max_len_samples:
zero_pad = np.random.rand(self._audio_max_len_samples - audio.shape[0], audio.shape[1])*self._eps
audio = np.vstack((audio, zero_pad))
elif audio.shape[0] > self._audio_max_len_samples:
audio = audio[:self._audio_max_len_samples, :]
return audio, fs
# INPUT FEATURES
@staticmethod
def _next_greater_power_of_2(x):
return 2 ** (x - 1).bit_length()
def _spectrogram(self, audio_input):
_nb_ch = audio_input.shape[1]
nb_bins = self._nfft // 2
spectra = np.zeros((self._max_feat_frames, nb_bins + 1, _nb_ch), dtype=complex)
for ch_cnt in range(_nb_ch):
stft_ch = librosa.core.stft(np.asfortranarray(audio_input[:, ch_cnt]), n_fft=self._nfft, hop_length=self._hop_len,
win_length=self._win_len, window='hann')
spectra[:, :, ch_cnt] = stft_ch[:, :self._max_feat_frames].T
return spectra
def _get_mel_spectrogram(self, linear_spectra):
mel_feat = np.zeros((linear_spectra.shape[0], self._nb_mel_bins, linear_spectra.shape[-1]))
for ch_cnt in range(linear_spectra.shape[-1]):
mag_spectra = np.abs(linear_spectra[:, :, ch_cnt])**2
mel_spectra = np.dot(mag_spectra, self._mel_wts)
log_mel_spectra = librosa.power_to_db(mel_spectra)
mel_feat[:, :, ch_cnt] = log_mel_spectra
mel_feat = mel_feat.transpose((0, 2, 1)).reshape((linear_spectra.shape[0], -1))
return mel_feat
def _get_foa_intensity_vectors(self, linear_spectra):
IVx = np.real(np.conj(linear_spectra[:, :, 0]) * linear_spectra[:, :, 3])
IVy = np.real(np.conj(linear_spectra[:, :, 0]) * linear_spectra[:, :, 1])
IVz = np.real(np.conj(linear_spectra[:, :, 0]) * linear_spectra[:, :, 2])
normal = self._eps + (np.abs(linear_spectra[:, :, 0])**2 + np.abs(linear_spectra[:, :, 1])**2 + np.abs(linear_spectra[:, :, 2])**2 + np.abs(linear_spectra[:, :, 3])**2)/2.
#normal = np.sqrt(IVx**2 + IVy**2 + IVz**2) + self._eps
IVx = np.dot(IVx / normal, self._mel_wts)
IVy = np.dot(IVy / normal, self._mel_wts)
IVz = np.dot(IVz / normal, self._mel_wts)
# we are doing the following instead of simply concatenating to keep the processing similar to mel_spec and gcc
foa_iv = np.dstack((IVx, IVy, IVz))
foa_iv = foa_iv.transpose((0, 2, 1)).reshape((linear_spectra.shape[0], -1))
if np.isnan(foa_iv).any():
print('Feature extraction is generating nan outputs')
exit()
return foa_iv
def _get_gcc(self, linear_spectra):
gcc_channels = nCr(linear_spectra.shape[-1], 2)
gcc_feat = np.zeros((linear_spectra.shape[0], self._nb_mel_bins, gcc_channels))
cnt = 0
for m in range(linear_spectra.shape[-1]):
for n in range(m+1, linear_spectra.shape[-1]):
R = np.conj(linear_spectra[:, :, m]) * linear_spectra[:, :, n]
cc = np.fft.irfft(np.exp(1.j*np.angle(R)))
cc = np.concatenate((cc[:, -self._nb_mel_bins//2:], cc[:, :self._nb_mel_bins//2]), axis=-1)
gcc_feat[:, :, cnt] = cc
cnt += 1
return gcc_feat.transpose((0, 2, 1)).reshape((linear_spectra.shape[0], -1))
def _get_spectrogram_for_file(self, audio_path):
audio_in, fs = self._load_audio(audio_path)
audio_spec = self._spectrogram(audio_in)
return audio_spec
# OUTPUT LABELS
def get_labels_for_file(self, _desc_file):
"""
Reads description file and returns classification based SED labels and regression based DOA labels
:param _desc_file: metadata description file
:return: label_mat: labels of the format [sed_label, doa_label],
where sed_label is of dimension [nb_frames, nb_classes] which is 1 for active sound event else zero
where doa_labels is of dimension [nb_frames, 3*nb_classes], nb_classes each for x, y, z axis,
"""
se_label = np.zeros((self._max_label_frames, len(self._unique_classes)))
x_label = np.zeros((self._max_label_frames, len(self._unique_classes)))
y_label = np.zeros((self._max_label_frames, len(self._unique_classes)))
z_label = np.zeros((self._max_label_frames, len(self._unique_classes)))
for frame_ind, active_event_list in _desc_file.items():
if frame_ind < self._max_label_frames:
for active_event in active_event_list:
se_label[frame_ind, active_event[0]] = 1
x_label[frame_ind, active_event[0]] = active_event[1]
y_label[frame_ind, active_event[0]] = active_event[2]
z_label[frame_ind, active_event[0]] = active_event[3]
label_mat = np.concatenate((se_label, x_label, y_label, z_label), axis=1)
return label_mat
# ------------------------------- EXTRACT FEATURE AND PREPROCESS IT -------------------------------
def extract_all_feature(self):
# setting up folders
self._feat_dir = self.get_unnormalized_feat_dir()
create_folder(self._feat_dir)
# extraction starts
print('Extracting spectrogram:')
print('\t\taud_dir {}\n\t\tdesc_dir {}\n\t\tfeat_dir {}'.format(
self._aud_dir, self._desc_dir, self._feat_dir))
for split in os.listdir(self._aud_dir):
print('Split: {}'.format(split))
for file_cnt, file_name in enumerate(os.listdir(os.path.join(self._aud_dir, split))):
wav_filename = '{}.wav'.format(file_name.split('.')[0])
spect = self._get_spectrogram_for_file(os.path.join(self._aud_dir, split, wav_filename))
#extract mel
mel_spect = self._get_mel_spectrogram(spect)
feat = None
if self._dataset is 'foa':
# extract intensity vectors
foa_iv = self._get_foa_intensity_vectors(spect)
feat = np.concatenate((mel_spect, foa_iv), axis=-1)
elif self._dataset is 'mic':
# extract gcc
gcc = self._get_gcc(spect)
feat = np.concatenate((mel_spect, gcc), axis=-1)
else:
print('ERROR: Unknown dataset format {}'.format(self._dataset))
exit()
if feat is not None:
print('\t{}: {}, {}'.format(file_cnt, file_name, feat.shape ))
np.save(os.path.join(self._feat_dir, '{}.npy'.format(wav_filename.split('.')[0])), feat)
def preprocess_features(self):
# Setting up folders and filenames
self._feat_dir = self.get_unnormalized_feat_dir()
self._feat_dir_norm = self.get_normalized_feat_dir()
create_folder(self._feat_dir_norm)
normalized_features_wts_file = self.get_normalized_wts_file()
spec_scaler = None
# pre-processing starts
if self._is_eval:
spec_scaler = joblib.load(normalized_features_wts_file)
print('Normalized_features_wts_file: {}. Loaded.'.format(normalized_features_wts_file))
else:
print('Estimating weights for normalizing feature files:')
print('\t\tfeat_dir: {}'.format(self._feat_dir))
spec_scaler = preprocessing.StandardScaler()
for file_cnt, file_name in enumerate(os.listdir(self._feat_dir)):
print('{}: {}'.format(file_cnt, file_name))
feat_file = np.load(os.path.join(self._feat_dir, file_name))
spec_scaler.partial_fit(feat_file)
del feat_file
joblib.dump(
spec_scaler,
normalized_features_wts_file
)
print('Normalized_features_wts_file: {}. Saved.'.format(normalized_features_wts_file))
print('Normalizing feature files:')
print('\t\tfeat_dir_norm {}'.format(self._feat_dir_norm))
for file_cnt, file_name in enumerate(os.listdir(self._feat_dir)):
print('{}: {}'.format(file_cnt, file_name))
feat_file = np.load(os.path.join(self._feat_dir, file_name))
feat_file = spec_scaler.transform(feat_file)
np.save(
os.path.join(self._feat_dir_norm, file_name),
feat_file
)
del feat_file
print('normalized files written to {}'.format(self._feat_dir_norm))
# ------------------------------- EXTRACT LABELS AND PREPROCESS IT -------------------------------
def extract_all_labels(self):
self._label_dir = self.get_label_dir()
print('Extracting labels:')
print('\t\taud_dir {}\n\t\tdesc_dir {}\n\t\tlabel_dir {}'.format(
self._aud_dir, self._desc_dir, self._label_dir))
create_folder(self._label_dir)
for split in os.listdir(self._desc_dir):
print('Split: {}'.format(split))
for file_cnt, file_name in enumerate(os.listdir(os.path.join(self._desc_dir, split))):
wav_filename = '{}.wav'.format(file_name.split('.')[0])
desc_file_polar = self.load_output_format_file(os.path.join(self._desc_dir, split, file_name))
desc_file = self.convert_output_format_polar_to_cartesian(desc_file_polar)
label_mat = self.get_labels_for_file(desc_file)
print('\t{}: {}, {}'.format(file_cnt, file_name, label_mat.shape))
np.save(os.path.join(self._label_dir, '{}.npy'.format(wav_filename.split('.')[0])), label_mat)
# ------------------------------- DCASE OUTPUT FORMAT FUNCTIONS -------------------------------
def load_output_format_file(self, _output_format_file):
"""
Loads DCASE output format csv file and returns it in dictionary format
:param _output_format_file: DCASE output format CSV
:return: _output_dict: dictionary
"""
_output_dict = {}
_fid = open(_output_format_file, 'r')
# next(_fid)
for _line in _fid:
_words = _line.strip().split(',')
_frame_ind = int(_words[0])
if _frame_ind not in _output_dict:
_output_dict[_frame_ind] = []
if len(_words) == 5: #read polar coordinates format, we ignore the track count
_output_dict[_frame_ind].append([int(_words[1]), float(_words[3]), float(_words[4]), int(_words[2])])
elif len(_words) == 6: # read Cartesian coordinates format, we ignore the track count
_output_dict[_frame_ind].append([int(_words[1]), float(_words[3]), float(_words[4]), float(_words[5]), int(_words[2])])
_fid.close()
return _output_dict
def write_output_format_file(self, _output_format_file, _output_format_dict):
"""
Writes DCASE output format csv file, given output format dictionary
:param _output_format_file:
:param _output_format_dict:
:return:
"""
_fid = open(_output_format_file, 'w')
# _fid.write('{},{},{},{}\n'.format('frame number with 20ms hop (int)', 'class index (int)', 'azimuth angle (int)', 'elevation angle (int)'))
for _frame_ind in _output_format_dict.keys():
for _value in _output_format_dict[_frame_ind]:
# Write Cartesian format output. Since baseline does not estimate track count we use a fixed value.
_fid.write('{},{},{},{},{},{}\n'.format(int(_frame_ind), int(_value[0]), 0, float(_value[1]), float(_value[2]), float(_value[3])))
_fid.close()
def segment_labels(self, _pred_dict, _max_frames):
'''
Collects class-wise sound event location information in segments of length 1s from reference dataset
:param _pred_dict: Dictionary containing frame-wise sound event time and location information. Output of SELD method
:param _max_frames: Total number of frames in the recording
:return: Dictionary containing class-wise sound event location information in each segment of audio
dictionary_name[segment-index][class-index] = list(frame-cnt-within-segment, azimuth, elevation)
'''
nb_blocks = int(np.ceil(_max_frames/float(self._nb_label_frames_1s)))
output_dict = {x: {} for x in range(nb_blocks)}
for frame_cnt in range(0, _max_frames, self._nb_label_frames_1s):
# Collect class-wise information for each block
# [class][frame] = <list of doa values>
# Data structure supports multi-instance occurence of same class
block_cnt = frame_cnt // self._nb_label_frames_1s
loc_dict = {}
for audio_frame in range(frame_cnt, frame_cnt+self._nb_label_frames_1s):
if audio_frame not in _pred_dict:
continue
for value in _pred_dict[audio_frame]:
if value[0] not in loc_dict:
loc_dict[value[0]] = {}
block_frame = audio_frame - frame_cnt
if block_frame not in loc_dict[value[0]]:
loc_dict[value[0]][block_frame] = []
loc_dict[value[0]][block_frame].append(value[1:])
# Update the block wise details collected above in a global structure
for class_cnt in loc_dict:
if class_cnt not in output_dict[block_cnt]:
output_dict[block_cnt][class_cnt] = []
keys = [k for k in loc_dict[class_cnt]]
values = [loc_dict[class_cnt][k] for k in loc_dict[class_cnt]]
output_dict[block_cnt][class_cnt].append([keys, values])
return output_dict
def regression_label_format_to_output_format(self, _sed_labels, _doa_labels):
"""
Converts the sed (classification) and doa labels predicted in regression format to dcase output format.
:param _sed_labels: SED labels matrix [nb_frames, nb_classes]
:param _doa_labels: DOA labels matrix [nb_frames, 2*nb_classes] or [nb_frames, 3*nb_classes]
:return: _output_dict: returns a dict containing dcase output format
"""
_nb_classes = len(self._unique_classes)
_is_polar = _doa_labels.shape[-1] == 2*_nb_classes
_azi_labels, _ele_labels = None, None
_x, _y, _z = None, None, None
if _is_polar:
_azi_labels = _doa_labels[:, :_nb_classes]
_ele_labels = _doa_labels[:, _nb_classes:]
else:
_x = _doa_labels[:, :_nb_classes]
_y = _doa_labels[:, _nb_classes:2*_nb_classes]
_z = _doa_labels[:, 2*_nb_classes:]
_output_dict = {}
for _frame_ind in range(_sed_labels.shape[0]):
_tmp_ind = np.where(_sed_labels[_frame_ind, :])
if len(_tmp_ind[0]):
_output_dict[_frame_ind] = []
for _tmp_class in _tmp_ind[0]:
if _is_polar:
_output_dict[_frame_ind].append([_tmp_class, _azi_labels[_frame_ind, _tmp_class], _ele_labels[_frame_ind, _tmp_class]])
else:
_output_dict[_frame_ind].append([_tmp_class, _x[_frame_ind, _tmp_class], _y[_frame_ind, _tmp_class], _z[_frame_ind, _tmp_class]])
return _output_dict
def convert_output_format_polar_to_cartesian(self, in_dict):
out_dict = {}
for frame_cnt in in_dict.keys():
if frame_cnt not in out_dict:
out_dict[frame_cnt] = []
for tmp_val in in_dict[frame_cnt]:
ele_rad = tmp_val[2]*np.pi/180.
azi_rad = tmp_val[1]*np.pi/180
tmp_label = np.cos(ele_rad)
x = np.cos(azi_rad) * tmp_label
y = np.sin(azi_rad) * tmp_label
z = np.sin(ele_rad)
out_dict[frame_cnt].append([tmp_val[0], x, y, z, tmp_val[-1]])
return out_dict
def convert_output_format_cartesian_to_polar(self, in_dict):
out_dict = {}
for frame_cnt in in_dict.keys():
if frame_cnt not in out_dict:
out_dict[frame_cnt] = []
for tmp_val in in_dict[frame_cnt]:
x, y, z = tmp_val[1], tmp_val[2], tmp_val[3]
# in degrees
azimuth = np.arctan2(y, x) * 180 / np.pi
elevation = np.arctan2(z, np.sqrt(x**2 + y**2)) * 180 / np.pi
r = np.sqrt(x**2 + y**2 + z**2)
out_dict[frame_cnt].append([tmp_val[0], azimuth, elevation, tmp_val[-1]])
return out_dict
# ------------------------------- Misc public functions -------------------------------
def get_classes(self):
return self._unique_classes
def get_normalized_feat_dir(self):
return os.path.join(
self._feat_label_dir,
'{}_norm'.format(self._dataset_combination)
)
def get_unnormalized_feat_dir(self):
return os.path.join(
self._feat_label_dir,
'{}'.format(self._dataset_combination)
)
def get_label_dir(self):
if self._is_eval:
return None
else:
return os.path.join(
self._feat_label_dir, '{}_label'.format(self._dataset_combination)
)
def get_normalized_wts_file(self):
return os.path.join(
self._feat_label_dir,
'{}_wts'.format(self._dataset)
)
def get_nb_channels(self):
return self._nb_channels
def get_nb_classes(self):
return len(self._unique_classes)
def nb_frames_1s(self):
return self._nb_label_frames_1s
def get_hop_len_sec(self):
return self._hop_len_s
def get_nb_frames(self):
return self._max_label_frames
def get_nb_mel_bins(self):
return self._nb_mel_bins
def create_folder(folder_name):
os.makedirs(folder_name, exist_ok=True)
def delete_and_create_folder(folder_name):
if os.path.exists(folder_name) and os.path.isdir(folder_name):
shutil.rmtree(folder_name)
os.makedirs(folder_name, exist_ok=True)