-
Notifications
You must be signed in to change notification settings - Fork 0
/
main1.py
230 lines (202 loc) · 9.45 KB
/
main1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import configargparse
import data_loader
import os
import torch
import models1
import utils
from utils import str2bool
import numpy as np
import random
from sklearn.metrics import recall_score
from sklearn.preprocessing import MultiLabelBinarizer
def get_parser():
"""Get default arguments."""
parser = configargparse.ArgumentParser(
description="Transfer learning config parser",
config_file_parser_class=configargparse.YAMLConfigFileParser,
formatter_class=configargparse.ArgumentDefaultsHelpFormatter,
)
# general configuration
parser.add("--config", is_config_file=True, help="config file path")
parser.add("--seed", type=int, default=0)
parser.add_argument('--num_workers', type=int, default=0)
# network related
parser.add_argument('--backbone', type=str, default='resnet50')
parser.add_argument('--use_bottleneck', type=str2bool, default=True)
# data loading related
parser.add_argument('--data_dir', type=str, required=True)
parser.add_argument('--src_domain', type=str, required=True)
parser.add_argument('--tgt_domain', type=str, required=True)
parser.add_argument('--src_val', type=str, required=True)
# training related
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--n_epoch', type=int, default=100)
parser.add_argument('--early_stop', type=int, default=0, help="Early stopping")
parser.add_argument('--epoch_based_training', type=str2bool, default=False, help="Epoch-based training / Iteration-based training")
parser.add_argument("--n_iter_per_epoch", type=int, default=20, help="Used in Iteration-based training")
# optimizer related
parser.add_argument('--lr', type=float, default=1e-3)
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--weight_decay', type=float, default=5e-4)
# learning rate scheduler related
parser.add_argument('--lr_gamma', type=float, default=0.0003)
parser.add_argument('--lr_decay', type=float, default=0.75)
parser.add_argument('--lr_scheduler', type=str2bool, default=True)
# transfer related
parser.add_argument('--transfer_loss_weight', type=float, default=10)
parser.add_argument('--transfer_loss', type=str, default='mmd')
return parser
def set_random_seed(seed=0):
# seed setting
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def load_data(args):
'''
src_domain, tgt_domain data to load
'''
folder_src = os.path.join(args.data_dir, args.src_domain)
folder_tgt = os.path.join(args.data_dir, args.tgt_domain)
folder_val = os.path.join(args.data_dir, args.src_val)
source_loader, n_class = data_loader.load_data(
folder_src, args.batch_size, infinite_data_loader=not args.epoch_based_training, train=True, num_workers=args.num_workers)
target_train_loader, _ = data_loader.load_data(
folder_tgt, args.batch_size, infinite_data_loader=not args.epoch_based_training, train=True, num_workers=args.num_workers)
source_test_loader, _ = data_loader.load_data(
folder_val, args.batch_size, infinite_data_loader=False , train=False, num_workers=args.num_workers)
return source_loader, target_train_loader, source_test_loader, n_class
def get_model(args):
model = models1.TransferNet(
args.n_class, transfer_loss=args.transfer_loss, base_net=args.backbone, max_iter=args.max_iter, use_bottleneck=args.use_bottleneck).to(args.device)
return model
def get_optimizer(model, args):
initial_lr = args.lr if not args.lr_scheduler else 1.0
params = model.get_parameters(initial_lr=initial_lr)
optimizer = torch.optim.SGD(params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay, nesterov=False)
return optimizer
def get_scheduler(optimizer, args):
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lambda x: args.lr * (1. + args.lr_gamma * float(x)) ** (-args.lr_decay))
return scheduler
def compute_uar(y_true, y_pred):
unique_labels = np.unique(y_true) # 获取唯一的标签类别
recalls = []
for label in unique_labels:
true_positives = np.sum((y_true == label) & (y_pred == label))
possible_positives = np.sum(y_true == label)
recall = true_positives / possible_positives if possible_positives > 0 else 0
recalls.append(recall)
uar = np.mean(recalls)
return uar
def test(model, source_test_loader, args):
model.eval()
test_loss = utils.AverageMeter()
correct = 0
criterion = torch.nn.CrossEntropyLoss()
len_source_dataset = len(source_test_loader.dataset)
pred_label = []
true_label = []
with torch.no_grad():
for data, source in source_test_loader:
data, source = data.to(args.device), source.to(args.device)
s_output = model.predict(data)
loss = criterion(s_output, source)
test_loss.update(loss.item())
pred = torch.max(s_output, 1)[1]
pred_label.extend(pred.tolist())
true_label.extend(source.tolist())
correct += torch.sum(pred == source)
acc = 100. * correct / len_source_dataset
uar = compute_uar(true_label, pred_label)
print(len_source_dataset)
return acc, uar, test_loss.avg, pred_label, true_label
def train(source_loader, target_train_loader, source_test_loader, model, optimizer, lr_scheduler, args):
len_source_loader = len(source_loader)
len_target_loader = len(target_train_loader)
n_batch = min(len_source_loader, len_target_loader)
if n_batch == 0:
n_batch = args.n_iter_per_epoch
iter_source, iter_target = iter(source_loader), iter(target_train_loader)
best_acc = 0
best_uar = 0
stop = 0
log = []
final_pred_label = []
final_true_label = []
for e in range(1, args.n_epoch+1):
model.train()
train_loss_clf = utils.AverageMeter()
train_loss_transfer = utils.AverageMeter()
train_loss_total = utils.AverageMeter()
model.epoch_based_processing(n_batch)
if max(len_target_loader, len_source_loader) != 0:
iter_source, iter_target = iter(source_loader), iter(target_train_loader)
criterion = torch.nn.CrossEntropyLoss()
for _ in range(n_batch):
data_source, label_source = next(iter_source) # .next()
data_target, label_target = next(iter_target) # .next()
#data_target, _ = next(iter_target) # .next()
data_source, label_source = data_source.to(args.device), label_source.to(args.device)
#data_target = data_target.to(args.device)
data_target , label_target= data_target.to(args.device), label_target.to(args.device)
clf_loss, transfer_loss = model(data_source, data_target, label_source,label_target)
loss = clf_loss + args.transfer_loss_weight * transfer_loss
optimizer.zero_grad()
loss.backward()
optimizer.step()
if lr_scheduler:
lr_scheduler.step()
train_loss_clf.update(clf_loss.item())
train_loss_transfer.update(transfer_loss.item())
train_loss_total.update(loss.item())
log.append([train_loss_clf.avg, train_loss_transfer.avg, train_loss_total.avg])
info = 'Epoch: [{:2d}/{}], cls_loss: {:.4f}, transfer_loss: {:.4f}, total_Loss: {:.4f}'.format(
e, args.n_epoch, train_loss_clf.avg, train_loss_transfer.avg, train_loss_total.avg)
# Test
stop += 1
test_acc, uar, test_loss, pred_label, true_label = test(model, source_test_loader, args)
info += ', test_loss {:4f}, test_acc: {:.4f}, test_uar: {:.4f}'.format(test_loss, test_acc, uar)
np_log = np.array(log, dtype=float)
np.savetxt('train_log.csv', np_log, delimiter=',', fmt='%.6f')
if best_acc < test_acc:
best_acc = test_acc
best_uar = uar
final_pred_label = pred_label
final_true_label = true_label
stop = 0
if args.early_stop > 0 and stop >= args.early_stop:
print(info)
break
print(info)
final_true_label = [str(i)+'\n' for i in final_true_label]
f=open("true_label.txt","w")
f.writelines(final_true_label)
f.close()
final_pred_label = [str(i)+'\n' for i in final_pred_label]
f1=open("pred_label.txt","w")
f1.writelines(final_pred_label)
f1.close()
print('Transfer result: {:.4f}, {:.4f}'.format(best_acc, best_uar))
def main():
parser = get_parser()
args = parser.parse_args()
setattr(args, "device", torch.device('cuda' if torch.cuda.is_available() else 'cpu'))
print(args)
set_random_seed(args.seed)
source_loader, target_train_loader, source_test_loader, n_class = load_data(args)
setattr(args, "n_class", n_class)
if args.epoch_based_training:
setattr(args, "max_iter", args.n_epoch * min(len(source_loader), len(target_train_loader)))
else:
setattr(args, "max_iter", args.n_epoch * args.n_iter_per_epoch)
model = get_model(args)
optimizer = get_optimizer(model, args)
if args.lr_scheduler:
scheduler = get_scheduler(optimizer, args)
else:
scheduler = None
train(source_loader, target_train_loader, source_test_loader, model, optimizer, scheduler, args)
if __name__ == "__main__":
main()