-
Notifications
You must be signed in to change notification settings - Fork 0
/
revenue_timeseries.yaml
182 lines (172 loc) · 5 KB
/
revenue_timeseries.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
name: Revenue
tables:
- name: daily_revenue
description: Daily total revenue, aligned with daily "Cost of Goods Sold" (COGS), and forecasted revenue.
base_table:
database: cortex_analyst_demo
schema: revenue_timeseries
table: daily_revenue
primary_key:
columns:
- date
- product_id
- region_id
time_dimensions:
- name: date
expr: date
description: date with measures of revenue, COGS, and forecasted revenue.
unique: true
data_type: date
measures:
- name: daily_revenue
expr: revenue
description: total revenue for the given day
synonyms: ["sales", "income"]
default_aggregation: sum
data_type: number
- name: daily_cogs
expr: cogs
description: total cost of goods sold for the given day
synonyms: ["cost", "expenditures"]
default_aggregation: sum
data_type: number
- name: daily_forecasted_revenue
expr: forecasted_revenue
description: total forecasted revenue for a given day
synonyms: ["forecasted sales", "forecasted income"]
default_aggregation: sum
data_type: number
- name: daily_profit
description: profit is the difference between revenue and expenses.
expr: revenue - cogs
data_type: number
- name: daily_forecast_abs_error
synonyms:
- absolute error
- L1
description: absolute error between forecasted and actual revenue
expr: abs(forecasted_revenue - revenue)
data_type: number
default_aggregation: avg
dimensions:
- name: product_id
expr: product_id
data_type: number
- name: region_id
expr: region_id
data_type: number
- name: product
description: Product dimension table with unique product identifiers and attributes.
base_table:
database: cortex_analyst_demo
schema: revenue_timeseries
table: product_dim
primary_key:
columns:
- product_id
dimensions:
- name: product_id
expr: product_id
data_type: number
- name: product_line
expr: product_line
description: Product line associated with revenue
data_type: varchar
sample_values:
- Electronics
- Clothing
- Home Appliances
- Toys
- Books
- name: region
description: Region dimension table with unique region identifiers and geographic attributes.
base_table:
database: cortex_analyst_demo
schema: revenue_timeseries
table: region_dim
primary_key:
columns:
- region_id
dimensions:
- name: region_id
expr: region_id
data_type: number
- name: sales_region
expr: sales_region
description: Region associated with revenue
data_type: varchar
sample_values:
- North America
- Europe
- Asia
- South America
- Africa
- name: product_dimension
base_table:
database: cortex_analyst_demo
schema: revenue_timeseries
table: product_dim
dimensions:
- name: product_line
expr: product_line
cortex_search_service_name: product_line_search_service
data_type: varchar
relationships:
- name: revenue_to_product
left_table: daily_revenue
right_table: product
relationship_columns:
- left_column: product_id
right_column: product_id
join_type: left_outer
relationship_type: many_to_one
- name: revenue_to_region
left_table: daily_revenue
right_table: region
relationship_columns:
- left_column: region_id
right_column: region_id
join_type: left_outer
relationship_type: many_to_one
verified_queries:
# For eval sample nlimtiaco_sc_3__0
- name: "daily cumulative expenses in 2023 dec"
question: "daily cumulative expenses in 2023 dec"
verified_at: 1714752498
verified_by: renee
sql: "
SELECT
date,
SUM(daily_cogs) OVER (
ORDER BY
date ROWS BETWEEN UNBOUNDED PRECEDING
AND CURRENT ROW
) AS cumulative_cogs
FROM
daily_revenue
WHERE
date BETWEEN '2023-12-01'
AND '2023-12-31'
ORDER BY
date DESC;
"
# For eval sample nlimtiaco_sc_6__0
- name: "lowest revenue each month"
question: "For each month, what was the lowest daily revenue and on what date did that lowest revenue occur?"
sql: "WITH monthly_min_revenue AS (
SELECT
DATE_TRUNC('MONTH', date) AS month,
MIN(daily_revenue) AS min_revenue
FROM daily_revenue
GROUP BY
DATE_TRUNC('MONTH', date)
)
SELECT
mmr.month,
mmr.min_revenue,
dr.date AS min_revenue_date
FROM monthly_min_revenue AS mmr JOIN daily_revenue AS dr
ON mmr.month = DATE_TRUNC('MONTH', dr.date) AND mmr.min_revenue = dr.daily_revenue
ORDER BY mmr.month DESC NULLS LAST"
verified_at: 1715187400
verified_by: renee