forked from charlesxzb/model-zoo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
yolov5m5.nntc.config.yaml
90 lines (77 loc) · 2.3 KB
/
yolov5m5.nntc.config.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
name: yolov5m-5
gops: 47.8
model: $(home)/yolov5m-5.0.pt
precision: true
BM1684X:
fp_loops:
- build_env: [ ]
fp_outdir_template: "{}b.fp32.compilation"
prec: FP32
- build_env:
- BMCOMPILER_LAYER_DTYPE_MODE=auto
fp_outdir_template: "{}b.fp16.compilation"
prec: FP16
cali:
python3 -m ufw.cali.cali_model
--model=$(model)
--input_shapes="[1,3,640,640]"
--net_name=$(name)
--cali_iterations=100
--cali_image_path=$(coco2017_cali_set)
--cali_image_preprocess='resize_h=640,resize_w=640;scale=0.003921569,bgr2rgb=True'
--target=$(target)
--try_cali_accuracy_opt
'-fpfwd_outputs=< 24 >14,< 24 >51,< 24 >82;-asym_threshold=true'
--test_iterations=1
--debug_cmd="not_call_bmnetu"
BM1684:
fp_outdir_template: "{}b.fp32.compilation"
cali:
python3 -m ufw.cali.cali_model
--model=$(model)
--input_shapes="[1,3,640,640]"
--net_name=$(name)
--cali_iterations=100
--cali_image_path=$(coco2017_cali_set)
--cali_image_preprocess='resize_h=640,resize_w=640;scale=0.003921569,bgr2rgb=True'
--target=$(target)
--try_cali_accuracy_opt
'-fpfwd_outputs=< 24 >14,< 24 >51,< 24 >82'
--test_iterations=1
--debug_cmd="not_call_bmnetu"
fp_compile_options:
python3 -m bmnetp
--model $(model)
--shapes [1,3,640,640]
--net_name $(name)
--target $(target)
--enable_profile True
time_only_cali:
python3 -m ufw.cali.cali_model
--model=$(model)
--input_shapes="[1,3,640,640]"
--net_name=$(name)
--cali_iterations=1
--target=$(target)
--try_cali_accuracy_opt='-fpfwd_outputs=< 24 >14,< 24 >51,< 24 >82'
--test_iterations=1
--debug_cmd="use_fake_data_to_test;not_suspend;not_call_bmnetu"
int8_model: $(workdir)/$(name)_bmnetp_deploy_int8_unique_top.prototxt
int8_weight: $(workdir)/$(name)_bmnetp.int8umodel
bmnetu_batch_sizes: [1, 4]
bmnetu_options:
--model $(int8_model)
--weight $(int8_weight)
--target $(target)
--enable_profile True
dataset:
imagedir: $(coco2017_val_set)
anno: $(coco2017_anno)/instances_val2017.json
harness:
type: yolo
args:
- name: FP32
bmodel: $(workdir)/1b.fp32.compilation/compilation.bmodel
- name: INT8
bmodel: $(workdir)/1b.compilation/compilation.bmodel