-
Notifications
You must be signed in to change notification settings - Fork 0
/
blog.html
517 lines (508 loc) · 40 KB
/
blog.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
<!DOCTYPE html>
<html id="top" lang="en">
<head>
<!-- Required meta tags -->
<meta charset="utf-8"/>
<meta content="width=device-width, initial-scale=1.0" name="viewport"/>
<title>
Sebastian Mohr - Blog
</title>
<meta content="" name="description"/>
<meta content="" name="keywords"/>
<!-- Bootstrap CSS -->
<link href="assets/css/bootstrap/bootstrap.min.css" rel="stylesheet"/>
<!-- Google Fonts -->
<link href="https://fonts.googleapis.com/css?family=Open+Sans:300,300i,400,400i,600,600i,700,700i|Raleway:300,300i,400,400i,500,500i,600,600i,700,700i|Poppins:300,300i,400,400i,500,500i,600,600i,700,700i" rel="stylesheet"/>
<!-- Highlight JS -->
<link href="https://unpkg.com/@highlightjs/[email protected]/styles/default.min.css" rel="stylesheet"/>
<!-- Master CSS -->
<link href="assets/css/main.css" rel="stylesheet"/>
<!-- Load mathjax -->
<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/latest.js?config=TeX-MML-AM_CHTML-full,Safe">
</script>
<!-- MathJax configuration -->
<script type="text/x-mathjax-config">
init_mathjax = function() {
if (window.MathJax) {
// MathJax loaded
MathJax.Hub.Config({
TeX: {
equationNumbers: {
autoNumber: "AMS",
useLabelIds: true
}
},
tex2jax: {
inlineMath: [ ['$','$'], ["\\(","\\)"] ],
displayMath: [ ['$$','$$'], ["\\[","\\]"] ],
processEscapes: true,
processEnvironments: true
},
displayAlign: 'center',
CommonHTML: {
linebreaks: {
automatic: true
}
},
"HTML-CSS": {
linebreaks: {
automatic: true
}
}
});
MathJax.Hub.Queue(["Typeset", MathJax.Hub]);
}
}
init_mathjax();
</script>
</head>
<body>
<!-- mobile navigator toggle button -->
<button class="mobile-navigator-toggle d-xl-none" type="button">
<i class="fas fa-bars">
</i>
</button>
<header id="header">
<div class="d-flex flex-column">
<div class="me">
<img class="img-fluid rounded-circle" src="assets/img/profile.png"/>
<h1 class="text-light">
<a href="index.html">
Sebastian Mohr
</a>
</h1>
<div class="social-links mt-3 text-center">
<a href="https://github.com/semohr">
<i class="fa fa-github">
</i>
</a>
<a href="https://orcid.org/0000-0002-4721-0561">
<i class="fab fa-orcid">
</i>
</a>
<a href="mailto:[email protected]">
<i class="far fa-envelope">
</i>
</a>
</div>
</div>
<hr/>
<nav class="navigator_ext">
<ul>
<li>
<a href="index.html">
<i class="fa fa-home">
</i>
<span>
Home
</span>
</a>
</li>
<li>
<a class="active" href="blog.html">
<i class="fa fa-book">
</i>
<span>
Blog
</span>
</a>
</li>
</ul>
</nav>
<hr/>
<nav class="navigator" id="blog_nav">
<ul>
<li>
<a href="#Spectral-graph-embedding">
<span>
Spectral graph embedding
</span>
</a>
</li>
<li class="sub-navigator">
<a href="#Basics">
<span>
Basics
</span>
</a>
</li>
<li class="sub-navigator">
<a href="#Main-objective">
<span>
Main objective
</span>
</a>
</li>
<li class="sub-navigator">
<a href="#Solution">
<span>
Solution
</span>
</a>
</li>
<li class="sub-navigator">
<a href="#Example">
<span>
Example
</span>
</a>
</li>
</ul>
<ul>
</ul>
</nav>
</div>
</header>
<main id="main">
<div class="container" id="notebook-container">
<div class="cell border-box-sizing text_cell rendered">
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h1 id="Spectral-graph-embedding">
Spectral graph embedding
</h1>
<p>
In the following I want to take a short look into how to perform laplacian spectral graph embedding. We will start with the mathematical basics on graphs. If you don't care about the math and just want to see the code you can jump right into the example.
</p>
<h2 id="Basics">
Basics
</h2>
<p>
We want to consider a directed graph $G = (V,E)$ with in total $|V|=N$ vertexes. Edges are defined by an adjacency matrix $A$, with the matrix values $a_{i,j}>0$. In the most simple case the adjacency matrix only contains ones and zeros but you can also weight connections by increasing the corresponding matrix values.
</p>
<p>
A usefull property for graphs is the degree matrix $D$ which contains information about the degree of each node. In our directed graph this corresponds to the incomming connections.
$$
D :=
\begin{cases}
deg(v_{i}) & \text{if } i=j\\
0 & \text{else}
\end{cases}
$$
</p>
<p>
Whereby the $deg(v_i)$ is the number of times a edge terminates at vertex $v_i$. In our directed graph that is the number of incomming connections.
</p>
<p>
The Laplacian matrix is defined for directed graphs as
</p>
$$
L :=
\begin{cases}
deg(v_{i}) & \text{if } i=j\\
-1 & \text{if } i \neq j \text{ and } v_i \text{ is adjacent to } v_j \\
0 & \text{else}
\end{cases}
$$
<p>
In most cases one would use the symmetric normalized Laplacian matrix. It is normalized using the degree matrix.
</p>
$$
L_{\text{sym}} = D^{-1/2}LD^{-1/2} = I- D^{-1/2}AD^{-1/2}
$$
<h2 id="Main-objective">
Main objective
</h2>
<p>
Given a directed graph we want to compute a low dimensions representation of this graph. Thus we want want to create a set of vectors $ X := \{ x_1,...x_N\} \in \!R^2$ such that the larger the values of the adjacent vectors the smaller the distance $||x_i-x_j||^2$ between the resulting vertices. We consider the two dimensional case, but in theory the method should also work for a higher number of dimensions.
</p>
$$
\text{min}_{X \in \!R^2} \sum_{i,j}a_{i,j}||x_i-x_j||^2\\
=\text{min}_{X \in \!R^2} \text{ trace}(XLX^T)
$$
<p>
Trivially this is solved by $X=0$ but we are not searching for the singular solution, we avoid this by introducting further constrains to our problem. All solution vectors should be orthorgonal and the set should be normalized:
$$
XX^T = I \\
X\cdot\!1 = 0
$$
</p>
<h2 id="Solution">
Solution
</h2>
<p>
We can solve the above defined problem by the graph visualization spectral algorithm.
</p>
<ul>
<li>
Compute Laplacian matrix $L$
</li>
<li>
Compute lowest three eigenpairs $(e_1,\lambda_1),(e_2,\lambda_2) ,(e_3,\lambda_3)$ i.e. $Le_k=\lambda_ke_k$
</li>
<li>
Construct the embedding $X$ using the eigenvectors $e_2,e_3$
$$
X=\begin{bmatrix}e_2^T \\ e_3^T\end{bmatrix}
$$
</li>
</ul>
<p>
I feel like deriving these formulas would be beyond the scope of this short blog entry. If you want to read up on the math I recommend this
<a href="http://www.cs.yale.edu/homes/spielman/PAPERS/SGTChapter.pdf">
book
</a>
by Daniel Spielman.
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing text_cell rendered">
<div class="inner_cell">
<div class="text_cell_render border-box-sizing rendered_html">
<h2 id="Example">
Example
</h2>
<p>
Next let us code up an example using the proposed algorithm.
</p>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3">
<pre><code class="language-python"># Normally you would create this adjacency matrix from your data
import numpy as np
A = np.zeros((14,14))
for i in range(13):
A[i,i+1] = 1
A[i+1,i] = 1
A[13,0] = 1
A[0,13] = 1
print(f"{A=}")
</code></pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre><code class="language-python">A=array([[0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1.],
[1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 1.],
[1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.]])
</code></pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3">
<pre><code class="language-python"># Compute the degree
deg = np.sum(A, axis=1)
D = np.diag(deg)
print(f"{D=}")
</code></pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre><code class="language-python">D=array([[2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 2., 0., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 2., 0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 2., 0., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2., 0., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2., 0., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2., 0.],
[0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 2.]])
</code></pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3">
<pre><code class="language-python"># Compute Laplacian matrix
L = D-A
print(f"L=array({np.round(L,1)})")
</code></pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_subarea output_stream output_stdout output_text">
<pre><code class="language-python">L=array([[ 2. -1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1.],
[-1. 2. -1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.],
[ 0. -1. 2. -1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.],
[ 0. 0. -1. 2. -1. 0. 0. 0. 0. 0. 0. 0. 0. 0.],
[ 0. 0. 0. -1. 2. -1. 0. 0. 0. 0. 0. 0. 0. 0.],
[ 0. 0. 0. 0. -1. 2. -1. 0. 0. 0. 0. 0. 0. 0.],
[ 0. 0. 0. 0. 0. -1. 2. -1. 0. 0. 0. 0. 0. 0.],
[ 0. 0. 0. 0. 0. 0. -1. 2. -1. 0. 0. 0. 0. 0.],
[ 0. 0. 0. 0. 0. 0. 0. -1. 2. -1. 0. 0. 0. 0.],
[ 0. 0. 0. 0. 0. 0. 0. 0. -1. 2. -1. 0. 0. 0.],
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. -1. 2. -1. 0. 0.],
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1. 2. -1. 0.],
[ 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1. 2. -1.],
[-1. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. -1. 2.]])
</code></pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3">
<pre><code class="language-python"># Compute eigenpairs
eigenvals, eigenvectors = np.linalg.eigh(L)
# sort by eigenvalues
i = eigenvals.argsort()[::-1]
eigenvals = eigenvals[i]
eigenvectors = eigenvectors[i]
</code></pre>
</div>
</div>
</div>
</div>
</div>
<div class="cell border-box-sizing code_cell rendered">
<div class="input">
<div class="inner_cell">
<div class="input_area">
<div class="highlight hl-ipython3">
<pre><code class="language-python"># Plotting
import matplotlib.pyplot as plt
def plot(x,y,A):
# Remove axis and set figuresize
plt.subplots(figsize=(10, 10))
plt.axis('off')
# Plot edges
for i, b in enumerate(A):
for j, a in enumerate(b):
if a > 0:
x_s = [x[i],x[j]]
y_s = [y[i],y[j]]
plt.plot(x_s,y_s,color="tab:gray")
# Plot points
plt.scatter(x,y,marker="o",s=150,zorder=10,color="tab:green")
# Plot the coordinates for each point
plot(eigenvectors[:,1],eigenvectors[:,2],A)
</code></pre>
</div>
</div>
</div>
</div>
<div class="output_wrapper">
<div class="output">
<div class="output_area">
<div class="output_png output_subarea">
<img src="
"/>
</div>
</div>
</div>
</div>
</div>
</div>
</main>
<footer id="footer">
<div class="container">
<div>
© Sebastian Mohr
</div>
<p>
Blog last updated 19. Jul 2021
</p>
</div>
</footer>
<a class="to-top" href="#top">
<i class="fas fa-chevron-up">
</i>
</a>
<!-- Bootstrap JS -->
<script src="assets/js/bootstrap/bootstrap.bundle.min.js">
</script>
<!-- Font Awesome -->
<script crossorigin="anonymous" src="https://kit.fontawesome.com/1d156e89e1.js">
</script>
<!-- Highlight JS -->
<script src="https://unpkg.com/@highlightjs/[email protected]/highlight.min.js">
</script>
<script src="https://unpkg.com/highlightjs-badge/highlightjs/highlight.pack.js">
</script>
<!-- Highlight-Badge JS -->
<script src="https://unpkg.com/highlightjs-badge/highlightjs-badge.min.js">
</script>
<script>
setTimeout(function () {
var pres = document.querySelectorAll(".highlight>pre>code");
for (var i = 0; i < pres.length; i++) {
hljs.highlightBlock(pres[i]);
}
var options = {
contentSelector: ".highlight",
// Delay in ms used for `setTimeout` before badging is applied
// Use if you need to time highlighting and badge application
// since the badges need to be applied afterwards.
// 0 - direct execution (ie. you handle timing
loadDelay:0,
// CSS class(es) used to render the copy icon.
copyIconClass: "fa fa-copy",
// CSS class(es) used to render the done icon.
checkIconClass: "fa fa-check text-success",
// hook to allow modifying the text before it's pasted
onBeforeTextCopied: function(text, codeElement) {
console.log(text)
return text; // you can fix up the text here
}
};
window.highlightJsBadge(options);
},10);
</script>
<!-- Master JS -->
<script src="assets/js/main.js">
</script>
<script type="text/javascript">
var $sections = document.querySelectorAll('h1, h2')
//$sections = Array.prototype.slice.call($sections);
var ids_ex = ["Spectral-graph-embedding","Example","Basics","Main-objective","Solution"];
// map each section id to their corresponding navigation link
var sectionIdTonavigationLink = {};
for (var i = $sections.length-1; i >= 0; i--) {
var id = $sections[i].id;
if (id != ""){
sectionIdTonavigationLink[id] = document.querySelectorAll('nav > ul > li > a[href=\\#' + id + ']') || null;
}
}
</script>
</body>
</html>