You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
====== Iteration 0 ======
Running SCF calculations ...
-----------------------------
converged SCF energy = -76.3545540706806
converged SCF energy = -76.3508207847105
converged SCF energy = -76.355707764332
converged SCF energy = -76.356824320776
converged SCF energy = -76.3739444533522
converged SCF energy = -76.3695047518221
converged SCF energy = -76.3694359857328
converged SCF energy = -76.3496333319949
converged SCF energy = -76.3557216068751
converged SCF energy = -76.3662805538731
Projecting onto basis ...
-----------------------------
workdir/0/pyscf.chkpt
workdir/1/pyscf.chkpt
workdir/2/pyscf.chkpt
workdir/3/pyscf.chkpt
workdir/4/pyscf.chkpt
workdir/5/pyscf.chkpt
workdir/6/pyscf.chkpt
workdir/7/pyscf.chkpt
workdir/8/pyscf.chkpt
workdir/9/pyscf.chkpt
10 systems found, adding 97a66c91908d8f76f249705362d9e536
10 systems found, adding energy
10 systems found, adding energy
Baseline accuracy
-----------------------------
{'mae': 0.05993, 'max': 0.09156, 'mean deviation': 0.0, 'rmse': 0.06635}
Fitting initial ML model ...
-----------------------------
Using symmetrizer trace
Fitting 4 folds for each of 3 candidates, totalling 12 fits
Activation unknown, defaulting to GELU
ModuleDict(
(X): Linear(in_features=19, out_features=1, bias=True)
)
Epoch 0 || Training loss : 0.737958 Validation loss : 0.000000 Learning rate: 0.001
Epoch 1000 || Training loss : 0.013578 Validation loss : 0.000000 Learning rate: 0.001
Epoch 2000 || Training loss : 0.012651 Validation loss : 0.000000 Learning rate: 0.001
Epoch 3000 || Training loss : 0.011192 Validation loss : 0.000000 Learning rate: 0.001
Epoch 4000 || Training loss : 0.009135 Validation loss : 0.000000 Learning rate: 0.001
Epoch 5000 || Training loss : 0.006535 Validation loss : 0.000000 Learning rate: 0.001
Epoch 6000 || Training loss : 0.003770 Validation loss : 0.000000 Learning rate: 0.001
Epoch 7000 || Training loss : 0.001574 Validation loss : 0.000000 Learning rate: 0.001
Epoch 8000 || Training loss : 0.000567 Validation loss : 0.000000 Learning rate: 0.001
Epoch 9000 || Training loss : 0.000380 Validation loss : 0.000000 Learning rate: 0.001
Epoch 10000 || Training loss : 0.000298 Validation loss : 0.000000 Learning rate: 0.001
Epoch 11000 || Training loss : 0.000238 Validation loss : 0.000000 Learning rate: 0.001
Epoch 12000 || Training loss : 0.000191 Validation loss : 0.000000 Learning rate: 0.001
Epoch 13000 || Training loss : 0.000144 Validation loss : 0.000000 Learning rate: 0.001
Epoch 14000 || Training loss : 0.000111 Validation loss : 0.000000 Learning rate: 0.001
Epoch 15000 || Training loss : 0.000086 Validation loss : 0.000000 Learning rate: 0.001
Epoch 16000 || Training loss : 0.000066 Validation loss : 0.000000 Learning rate: 0.001
Epoch 17000 || Training loss : 0.000051 Validation loss : 0.000000 Learning rate: 0.001
Epoch 18000 || Training loss : 0.000039 Validation loss : 0.000000 Learning rate: 0.001
Epoch 19000 || Training loss : 0.000101 Validation loss : 0.000000 Learning rate: 0.001
Epoch 20000 || Training loss : 0.000088 Validation loss : 0.000000 Learning rate: 0.001
Activation unknown, defaulting to GELU
ModuleDict(
(X): Linear(in_features=19, out_features=1, bias=True)
)
Epoch 0 || Training loss : 0.688702 Validation loss : 0.000000 Learning rate: 0.001
Epoch 1000 || Training loss : 0.005803 Validation loss : 0.000000 Learning rate: 0.001
Epoch 2000 || Training loss : 0.004593 Validation loss : 0.000000 Learning rate: 0.001
Epoch 3000 || Training loss : 0.004208 Validation loss : 0.000000 Learning rate: 0.001
Epoch 4000 || Training loss : 0.004022 Validation loss : 0.000000 Learning rate: 0.001
Epoch 5000 || Training loss : 0.003779 Validation loss : 0.000000 Learning rate: 0.001
Epoch 6000 || Training loss : 0.003422 Validation loss : 0.000000 Learning rate: 0.001
Epoch 7000 || Training loss : 0.002935 Validation loss : 0.000000 Learning rate: 0.001
Epoch 8000 || Training loss : 0.002444 Validation loss : 0.000000 Learning rate: 0.001
Epoch 9000 || Training loss : 0.002092 Validation loss : 0.000000 Learning rate: 0.001
Epoch 10000 || Training loss : 0.001836 Validation loss : 0.000000 Learning rate: 0.001
Epoch 11000 || Training loss : 0.001651 Validation loss : 0.000000 Learning rate: 0.001
Epoch 12000 || Training loss : 0.001514 Validation loss : 0.000000 Learning rate: 0.001
Epoch 13000 || Training loss : 0.001407 Validation loss : 0.000000 Learning rate: 0.001
Epoch 14000 || Training loss : 0.001320 Validation loss : 0.000000 Learning rate: 0.001
Epoch 15000 || Training loss : 0.001247 Validation loss : 0.000000 Learning rate: 0.001
Epoch 16000 || Training loss : 0.001183 Validation loss : 0.000000 Learning rate: 0.001
Epoch 17000 || Training loss : 0.001126 Validation loss : 0.000000 Learning rate: 0.001
Epoch 18000 || Training loss : 0.001074 Validation loss : 0.000000 Learning rate: 0.001
Epoch 19000 || Training loss : 0.001024 Validation loss : 0.000000 Learning rate: 0.001
Epoch 20000 || Training loss : 0.000981 Validation loss : 0.000000 Learning rate: 0.001
Activation unknown, defaulting to GELU
ModuleDict(
(X): Linear(in_features=19, out_features=1, bias=True)
)
Epoch 0 || Training loss : 0.172542 Validation loss : 0.000000 Learning rate: 0.001
Epoch 1000 || Training loss : 0.003400 Validation loss : 0.000000 Learning rate: 0.001
Epoch 2000 || Training loss : 0.002257 Validation loss : 0.000000 Learning rate: 0.001
Epoch 3000 || Training loss : 0.001851 Validation loss : 0.000000 Learning rate: 0.001
Epoch 4000 || Training loss : 0.001511 Validation loss : 0.000000 Learning rate: 0.001
Epoch 5000 || Training loss : 0.001225 Validation loss : 0.000000 Learning rate: 0.001
Epoch 6000 || Training loss : 0.000936 Validation loss : 0.000000 Learning rate: 0.001
Epoch 7000 || Training loss : 0.000696 Validation loss : 0.000000 Learning rate: 0.001
Epoch 8000 || Training loss : 0.000498 Validation loss : 0.000000 Learning rate: 0.001
Epoch 9000 || Training loss : 0.000386 Validation loss : 0.000000 Learning rate: 0.001
Epoch 10000 || Training loss : 0.000261 Validation loss : 0.000000 Learning rate: 0.001
Epoch 11000 || Training loss : 0.000219 Validation loss : 0.000000 Learning rate: 0.001
Epoch 12000 || Training loss : 0.000208 Validation loss : 0.000000 Learning rate: 0.001
Epoch 13000 || Training loss : 0.000247 Validation loss : 0.000000 Learning rate: 0.001
Epoch 14000 || Training loss : 0.000201 Validation loss : 0.000000 Learning rate: 0.001
Epoch 15000 || Training loss : 0.000199 Validation loss : 0.000000 Learning rate: 0.001
Epoch 16000 || Training loss : 0.001895 Validation loss : 0.000000 Learning rate: 0.001
Epoch 17000 || Training loss : 0.000876 Validation loss : 0.000000 Learning rate: 0.001
Epoch 18000 || Training loss : 0.000205 Validation loss : 0.000000 Learning rate: 0.001
Epoch 19000 || Training loss : 0.000184 Validation loss : 0.000000 Learning rate: 0.001
Epoch 20000 || Training loss : 0.000181 Validation loss : 0.000000 Learning rate: 0.001
Activation unknown, defaulting to GELU
ModuleDict(
(X): Linear(in_features=19, out_features=1, bias=True)
)
Epoch 0 || Training loss : 0.276985 Validation loss : 0.000000 Learning rate: 0.001
Epoch 1000 || Training loss : 0.001160 Validation loss : 0.000000 Learning rate: 0.001
Epoch 2000 || Training loss : 0.000992 Validation loss : 0.000000 Learning rate: 0.001
Epoch 3000 || Training loss : 0.000924 Validation loss : 0.000000 Learning rate: 0.001
Epoch 4000 || Training loss : 0.000869 Validation loss : 0.000000 Learning rate: 0.001
Epoch 5000 || Training loss : 0.000834 Validation loss : 0.000000 Learning rate: 0.001
Epoch 6000 || Training loss : 0.000810 Validation loss : 0.000000 Learning rate: 0.001
Epoch 7000 || Training loss : 0.000787 Validation loss : 0.000000 Learning rate: 0.001
Epoch 8000 || Training loss : 0.000763 Validation loss : 0.000000 Learning rate: 0.001
Epoch 9000 || Training loss : 0.000737 Validation loss : 0.000000 Learning rate: 0.001
Epoch 10000 || Training loss : 0.000716 Validation loss : 0.000000 Learning rate: 0.001
Epoch 11000 || Training loss : 0.000682 Validation loss : 0.000000 Learning rate: 0.001
Epoch 12000 || Training loss : 0.000656 Validation loss : 0.000000 Learning rate: 0.001
Epoch 13000 || Training loss : 0.000630 Validation loss : 0.000000 Learning rate: 0.001
Epoch 14000 || Training loss : 0.000606 Validation loss : 0.000000 Learning rate: 0.001
Epoch 15000 || Training loss : 0.000584 Validation loss : 0.000000 Learning rate: 0.001
Epoch 16000 || Training loss : 0.000562 Validation loss : 0.000000 Learning rate: 0.001
Epoch 17000 || Training loss : 0.000541 Validation loss : 0.000000 Learning rate: 0.001
Epoch 18000 || Training loss : 0.000522 Validation loss : 0.000000 Learning rate: 0.001
Epoch 19000 || Training loss : 0.000504 Validation loss : 0.000000 Learning rate: 0.001
Epoch 20000 || Training loss : 0.000487 Validation loss : 0.000000 Learning rate: 0.001
Activation unknown, defaulting to GELU
ModuleDict(
(X): Linear(in_features=19, out_features=1, bias=True)
)
Epoch 0 || Training loss : 0.624111 Validation loss : 0.000000 Learning rate: 0.001
Epoch 1000 || Training loss : 0.006432 Validation loss : 0.000000 Learning rate: 0.001
Epoch 2000 || Training loss : 0.005881 Validation loss : 0.000000 Learning rate: 0.001
Epoch 3000 || Training loss : 0.005859 Validation loss : 0.000000 Learning rate: 0.001
Epoch 4000 || Training loss : 0.005859 Validation loss : 0.000000 Learning rate: 0.001
Epoch 5000 || Training loss : 0.005859 Validation loss : 0.000000 Learning rate: 0.001
Epoch 6000 || Training loss : 0.005859 Validation loss : 0.000000 Learning rate: 0.001
Epoch 7000 || Training loss : 0.005859 Validation loss : 0.000000 Learning rate: 0.001
Epoch 8000 || Training loss : 0.005859 Validation loss : 0.000000 Learning rate: 0.001
Epoch 9000 || Training loss : 0.005859 Validation loss : 0.000000 Learning rate: 0.001
Epoch 10000 || Training loss : 0.005859 Validation loss : 0.000000 Learning rate: 0.001
Epoch 11000 || Training loss : 0.005859 Validation loss : 0.000000 Learning rate: 0.001
Epoch 12000 || Training loss : 0.005859 Validation loss : 0.000000 Learning rate: 0.001
Epoch 13000 || Training loss : 0.005859 Validation loss : 0.000000 Learning rate: 0.001
Epoch 14000 || Training loss : 0.005858 Validation loss : 0.000000 Learning rate: 0.001
Epoch 15000 || Training loss : 0.005857 Validation loss : 0.000000 Learning rate: 0.001
Epoch 16000 || Training loss : 0.005869 Validation loss : 0.000000 Learning rate: 0.001
Epoch 17000 || Training loss : 0.005868 Validation loss : 0.000000 Learning rate: 0.001
Epoch 18000 || Training loss : 0.005859 Validation loss : 0.000000 Learning rate: 0.001
Epoch 19000 || Training loss : 0.005864 Validation loss : 0.000000 Learning rate: 0.001
Epoch 20000 || Training loss : 0.005861 Validation loss : 0.000000 Learning rate: 0.001
Activation unknown, defaulting to GELU
ModuleDict(
(X): Linear(in_features=19, out_features=1, bias=True)
)
Epoch 0 || Training loss : 1.096901 Validation loss : 0.000000 Learning rate: 0.001
Epoch 1000 || Training loss : 0.013148 Validation loss : 0.000000 Learning rate: 0.001
Epoch 2000 || Training loss : 0.005045 Validation loss : 0.000000 Learning rate: 0.001
Epoch 3000 || Training loss : 0.007128 Validation loss : 0.000000 Learning rate: 0.001
Epoch 4000 || Training loss : 0.007204 Validation loss : 0.000000 Learning rate: 0.001
Epoch 5000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.001
Epoch 6000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.001
Epoch 7000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.001
Epoch 8000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.001
Epoch 9000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.001
Epoch 10000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.001
Epoch 11000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.001
Epoch 12000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.001
Epoch 00014: reducing learning rate of group 0 to 1.0000e-04.
Epoch 13000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.001
Epoch 14000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 15000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 16000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 17000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 18000 || Training loss : 0.007109 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 19000 || Training loss : 0.007109 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 20000 || Training loss : 0.007108 Validation loss : 0.000000 Learning rate: 0.0001
Activation unknown, defaulting to GELU
ModuleDict(
(X): Linear(in_features=19, out_features=1, bias=True)
)
Epoch 0 || Training loss : 0.441285 Validation loss : 0.000000 Learning rate: 0.001
Epoch 1000 || Training loss : 0.006409 Validation loss : 0.000000 Learning rate: 0.001
Epoch 2000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.001
Epoch 3000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.001
Epoch 4000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.001
Epoch 5000 || Training loss : 0.006473 Validation loss : 0.000000 Learning rate: 0.001
Epoch 6000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.001
Epoch 7000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.001
Epoch 8000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.001
Epoch 9000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.001
Epoch 10000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.001
Epoch 11000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.001
Epoch 00013: reducing learning rate of group 0 to 1.0000e-04.
Epoch 12000 || Training loss : 0.006475 Validation loss : 0.000000 Learning rate: 0.001
Epoch 13000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 14000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 15000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 16000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 17000 || Training loss : 0.006471 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 18000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 19000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 20000 || Training loss : 0.006472 Validation loss : 0.000000 Learning rate: 0.0001
Activation unknown, defaulting to GELU
ModuleDict(
(X): Linear(in_features=19, out_features=1, bias=True)
)
Epoch 0 || Training loss : 0.706089 Validation loss : 0.000000 Learning rate: 0.001
Epoch 1000 || Training loss : 0.009280 Validation loss : 0.000000 Learning rate: 0.001
Epoch 2000 || Training loss : 0.006735 Validation loss : 0.000000 Learning rate: 0.001
Epoch 3000 || Training loss : 0.006113 Validation loss : 0.000000 Learning rate: 0.001
Epoch 4000 || Training loss : 0.005982 Validation loss : 0.000000 Learning rate: 0.001
Epoch 5000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.001
Epoch 6000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.001
Epoch 7000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.001
Epoch 8000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.001
Epoch 9000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.001
Epoch 10000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.001
Epoch 11000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.001
Epoch 12000 || Training loss : 0.005990 Validation loss : 0.000000 Learning rate: 0.001
Epoch 13000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.001
Epoch 14000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.001
Epoch 15000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.001
Epoch 00017: reducing learning rate of group 0 to 1.0000e-04.
Epoch 16000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.001
Epoch 17000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 18000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 19000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 20000 || Training loss : 0.005973 Validation loss : 0.000000 Learning rate: 0.0001
Activation unknown, defaulting to GELU
ModuleDict(
(X): Linear(in_features=19, out_features=1, bias=True)
)
Epoch 0 || Training loss : 0.692270 Validation loss : 0.000000 Learning rate: 0.001
Epoch 1000 || Training loss : 0.003213 Validation loss : 0.000000 Learning rate: 0.001
Epoch 2000 || Training loss : 0.001989 Validation loss : 0.000000 Learning rate: 0.001
Epoch 3000 || Training loss : 0.001688 Validation loss : 0.000000 Learning rate: 0.001
Epoch 4000 || Training loss : 0.001691 Validation loss : 0.000000 Learning rate: 0.001
Epoch 5000 || Training loss : 0.001728 Validation loss : 0.000000 Learning rate: 0.001
Epoch 6000 || Training loss : 0.001731 Validation loss : 0.000000 Learning rate: 0.001
Epoch 7000 || Training loss : 0.001728 Validation loss : 0.000000 Learning rate: 0.001
Epoch 8000 || Training loss : 0.001727 Validation loss : 0.000000 Learning rate: 0.001
Epoch 9000 || Training loss : 0.001727 Validation loss : 0.000000 Learning rate: 0.001
Epoch 10000 || Training loss : 0.001727 Validation loss : 0.000000 Learning rate: 0.001
Epoch 11000 || Training loss : 0.001727 Validation loss : 0.000000 Learning rate: 0.001
Epoch 12000 || Training loss : 0.001727 Validation loss : 0.000000 Learning rate: 0.001
Epoch 13000 || Training loss : 0.001727 Validation loss : 0.000000 Learning rate: 0.001
Epoch 00015: reducing learning rate of group 0 to 1.0000e-04.
Epoch 14000 || Training loss : 0.001727 Validation loss : 0.000000 Learning rate: 0.001
Epoch 15000 || Training loss : 0.001727 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 16000 || Training loss : 0.001727 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 17000 || Training loss : 0.001727 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 18000 || Training loss : 0.001727 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 19000 || Training loss : 0.001727 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 20000 || Training loss : 0.001727 Validation loss : 0.000000 Learning rate: 0.0001
Activation unknown, defaulting to GELU
ModuleDict(
(X): Linear(in_features=19, out_features=1, bias=True)
)
Epoch 0 || Training loss : 0.419515 Validation loss : 0.000000 Learning rate: 0.001
Epoch 1000 || Training loss : 0.006821 Validation loss : 0.000000 Learning rate: 0.001
Epoch 2000 || Training loss : 0.003581 Validation loss : 0.000000 Learning rate: 0.001
Epoch 3000 || Training loss : 0.002444 Validation loss : 0.000000 Learning rate: 0.001
Epoch 4000 || Training loss : 0.002266 Validation loss : 0.000000 Learning rate: 0.001
Epoch 5000 || Training loss : 0.002343 Validation loss : 0.000000 Learning rate: 0.001
Epoch 6000 || Training loss : 0.002457 Validation loss : 0.000000 Learning rate: 0.001
Epoch 7000 || Training loss : 0.002566 Validation loss : 0.000000 Learning rate: 0.001
Epoch 8000 || Training loss : 0.002680 Validation loss : 0.000000 Learning rate: 0.001
Epoch 9000 || Training loss : 0.002774 Validation loss : 0.000000 Learning rate: 0.001
Epoch 10000 || Training loss : 0.002822 Validation loss : 0.000000 Learning rate: 0.001
Epoch 11000 || Training loss : 0.002834 Validation loss : 0.000000 Learning rate: 0.001
Epoch 12000 || Training loss : 0.002836 Validation loss : 0.000000 Learning rate: 0.001
Epoch 13000 || Training loss : 0.002836 Validation loss : 0.000000 Learning rate: 0.001
Epoch 14000 || Training loss : 0.002837 Validation loss : 0.000000 Learning rate: 0.001
Epoch 00016: reducing learning rate of group 0 to 1.0000e-04.
Epoch 15000 || Training loss : 0.002837 Validation loss : 0.000000 Learning rate: 0.001
Epoch 16000 || Training loss : 0.002837 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 17000 || Training loss : 0.002837 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 18000 || Training loss : 0.002837 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 19000 || Training loss : 0.002837 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 20000 || Training loss : 0.002837 Validation loss : 0.000000 Learning rate: 0.0001
Activation unknown, defaulting to GELU
ModuleDict(
(X): Linear(in_features=19, out_features=1, bias=True)
)
Epoch 0 || Training loss : 1.116178 Validation loss : 0.000000 Learning rate: 0.001
Epoch 1000 || Training loss : 0.017524 Validation loss : 0.000000 Learning rate: 0.001
Epoch 2000 || Training loss : 0.010454 Validation loss : 0.000000 Learning rate: 0.001
Epoch 3000 || Training loss : 0.009555 Validation loss : 0.000000 Learning rate: 0.001
Epoch 4000 || Training loss : 0.008318 Validation loss : 0.000000 Learning rate: 0.001
Epoch 5000 || Training loss : 0.006758 Validation loss : 0.000000 Learning rate: 0.001
Epoch 6000 || Training loss : 0.005142 Validation loss : 0.000000 Learning rate: 0.001
Epoch 7000 || Training loss : 0.003908 Validation loss : 0.000000 Learning rate: 0.001
Epoch 8000 || Training loss : 0.003240 Validation loss : 0.000000 Learning rate: 0.001
Epoch 9000 || Training loss : 0.002890 Validation loss : 0.000000 Learning rate: 0.001
Epoch 10000 || Training loss : 0.002633 Validation loss : 0.000000 Learning rate: 0.001
Epoch 11000 || Training loss : 0.002399 Validation loss : 0.000000 Learning rate: 0.001
Epoch 12000 || Training loss : 0.002211 Validation loss : 0.000000 Learning rate: 0.001
Epoch 13000 || Training loss : 0.002099 Validation loss : 0.000000 Learning rate: 0.001
Epoch 14000 || Training loss : 0.002061 Validation loss : 0.000000 Learning rate: 0.001
Epoch 15000 || Training loss : 0.002053 Validation loss : 0.000000 Learning rate: 0.001
Epoch 16000 || Training loss : 0.002051 Validation loss : 0.000000 Learning rate: 0.001
Epoch 17000 || Training loss : 0.002051 Validation loss : 0.000000 Learning rate: 0.001
Epoch 18000 || Training loss : 0.002051 Validation loss : 0.000000 Learning rate: 0.001
Epoch 19000 || Training loss : 0.002051 Validation loss : 0.000000 Learning rate: 0.001
Epoch 20000 || Training loss : 0.002051 Validation loss : 0.000000 Learning rate: 0.001
Activation unknown, defaulting to GELU
ModuleDict(
(X): Linear(in_features=19, out_features=1, bias=True)
)
Epoch 0 || Training loss : 0.585081 Validation loss : 0.000000 Learning rate: 0.001
Epoch 1000 || Training loss : 0.008857 Validation loss : 0.000000 Learning rate: 0.001
Epoch 2000 || Training loss : 0.005610 Validation loss : 0.000000 Learning rate: 0.001
Epoch 3000 || Training loss : 0.004271 Validation loss : 0.000000 Learning rate: 0.001
Epoch 4000 || Training loss : 0.003184 Validation loss : 0.000000 Learning rate: 0.001
Epoch 5000 || Training loss : 0.002515 Validation loss : 0.000000 Learning rate: 0.001
Epoch 6000 || Training loss : 0.002223 Validation loss : 0.000000 Learning rate: 0.001
Epoch 7000 || Training loss : 0.002111 Validation loss : 0.000000 Learning rate: 0.001
Epoch 8000 || Training loss : 0.002070 Validation loss : 0.000000 Learning rate: 0.001
Epoch 9000 || Training loss : 0.002063 Validation loss : 0.000000 Learning rate: 0.001
Epoch 10000 || Training loss : 0.002062 Validation loss : 0.000000 Learning rate: 0.001
Epoch 11000 || Training loss : 0.002062 Validation loss : 0.000000 Learning rate: 0.001
Epoch 12000 || Training loss : 0.002062 Validation loss : 0.000000 Learning rate: 0.001
Epoch 13000 || Training loss : 0.002062 Validation loss : 0.000000 Learning rate: 0.001
Epoch 14000 || Training loss : 0.002062 Overwritten attributes get_veff of <class 'pyscf.dft.rks.RKS'>
Validation loss : 0.000000 Learning rate: 0.001
Epoch 15000 || Training loss : 0.002062 Validation loss : 0.000000 Learning rate: 0.001
Epoch 16000 || Training loss : 0.002062 Validation loss : 0.000000 Learning rate: 0.001
Epoch 17000 || Training loss : 0.002109 Validation loss : 0.000000 Learning rate: 0.001
Epoch 18000 || Training loss : 0.003392 Validation loss : 0.000000 Learning rate: 0.001
Epoch 19000 || Training loss : 0.002062 Validation loss : 0.000000 Learning rate: 0.001
Epoch 20000 || Training loss : 0.002062 Validation loss : 0.000000 Learning rate: 0.001
Activation unknown, defaulting to GELU
ModuleDict(
(X): Linear(in_features=19, out_features=1, bias=True)
)
Epoch 0 || Training loss : 0.401415 Validation loss : 0.000000 Learning rate: 0.001
Epoch 1000 || Training loss : 0.004100 Validation loss : 0.000000 Learning rate: 0.001
Epoch 2000 || Training loss : 0.003189 Validation loss : 0.000000 Learning rate: 0.001
Epoch 3000 || Training loss : 0.003003 Validation loss : 0.000000 Learning rate: 0.001
Epoch 4000 || Training loss : 0.002946 Validation loss : 0.000000 Learning rate: 0.001
Epoch 5000 || Training loss : 0.002949 Validation loss : 0.000000 Learning rate: 0.001
Epoch 6000 || Training loss : 0.002954 Validation loss : 0.000000 Learning rate: 0.001
Epoch 7000 || Training loss : 0.002955 Validation loss : 0.000000 Learning rate: 0.001
Epoch 8000 || Training loss : 0.002957 Validation loss : 0.000000 Learning rate: 0.001
Epoch 9000 || Training loss : 0.002956 Validation loss : 0.000000 Learning rate: 0.001
Epoch 10000 || Training loss : 0.002957 Validation loss : 0.000000 Learning rate: 0.001
Epoch 11000 || Training loss : 0.002956 Validation loss : 0.000000 Learning rate: 0.001
Epoch 12000 || Training loss : 0.002956 Validation loss : 0.000000 Learning rate: 0.001
Epoch 13000 || Training loss : 0.002956 Validation loss : 0.000000 Learning rate: 0.001
Epoch 14000 || Training loss : 0.002956 Validation loss : 0.000000 Learning rate: 0.001
Epoch 00016: reducing learning rate of group 0 to 1.0000e-04.
Epoch 15000 || Training loss : 0.002956 Validation loss : 0.000000 Learning rate: 0.001
Epoch 16000 || Training loss : 0.002956 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 17000 || Training loss : 0.002956 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 18000 || Training loss : 0.002956 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 19000 || Training loss : 0.002956 Validation loss : 0.000000 Learning rate: 0.0001
Epoch 20000 || Training loss : 0.002956 Validation loss : 0.000000 Learning rate: 0.0001
====== Iteration 1 ======
Using symmetrizer trace
Success!
Running SCF calculations ...
-----------------------------
NeuralXC: Loading model from /home/egezer/neuralxc/examples/quickstart/sc/model_it1.jit
NeuralXC: Model successfully loaded
converged SCF energy = -76.3529189373852
NeuralXC: Loading model from /home/egezer/neuralxc/examples/quickstart/sc/model_it1.jit
NeuralXC: Model successfully loaded
converged SCF energy = -76.3482785744807
NeuralXC: Loading model from /home/egezer/neuralxc/examples/quickstart/sc/model_it1.jit
NeuralXC: Model successfully loaded
converged SCF energy = -76.3557948619506
NeuralXC: Loading model from /home/egezer/neuralxc/examples/quickstart/sc/model_it1.jit
NeuralXC: Model successfully loaded
converged SCF energy = -76.3566029382129
NeuralXC: Loading model from /home/egezer/neuralxc/examples/quickstart/sc/model_it1.jit
NeuralXC: Model successfully loaded
converged SCF energy = -76.3773105081291
NeuralXC: Loading model from /home/egezer/neuralxc/examples/quickstart/sc/model_it1.jit
NeuralXC: Model successfully loaded
converged SCF energy = -76.3717756096372
NeuralXC: Loading model from /home/egezer/neuralxc/examples/quickstart/sc/model_it1.jit
NeuralXC: Model successfully loaded
converged SCF energy = -76.3728823731244
NeuralXC: Loading model from /home/egezer/neuralxc/examples/quickstart/sc/model_it1.jit
NeuralXC: Model successfully loaded
converged SCF energy = -76.3468435329547
NeuralXC: Loading model from /home/egezer/neuralxc/examples/quickstart/sc/model_it1.jit
NeuralXC: Model successfully loaded
converged SCF energy = -76.355468924666
NeuralXC: Loading model from /home/egezer/neuralxc/examples/quickstart/sc/model_it1.jit
NeuralXC: Model successfully loaded
converged SCF energy = -76.3696142171586
Projecting onto basis...
-----------------------------
workdir/0/pyscf.chkpt
workdir/1/pyscf.chkpt
workdir/2/pyscf.chkpt
workdir/3/pyscf.chkpt
workdir/4/pyscf.chkpt
workdir/5/pyscf.chkpt
workdir/6/pyscf.chkpt
workdir/7/pyscf.chkpt
workdir/8/pyscf.chkpt
workdir/9/pyscf.chkpt
10 systems found, adding 97a66c91908d8f76f249705362d9e536
Traceback (most recent call last):
File "/home/egezer/.local/bin/neuralxc", line 7, in <module>
exec(compile(f.read(), __file__, 'exec'))
File "/home/egezer/neuralxc/bin/neuralxc", line 240, in <module>
func(**args_dict)
File "/home/egezer/neuralxc/neuralxc/drivers/model.py", line 266, in sc_driver
pre_driver(
File "/home/egezer/neuralxc/neuralxc/drivers/other.py", line 210, in pre_driver
add_data_driver(hdf5=file, system=system, method=method, density=filename, add=[], traj=xyz, override=True)
File "/home/egezer/neuralxc/neuralxc/drivers/data.py", line 81, in add_data_driver
obs(observable, zero)
File "/home/egezer/neuralxc/neuralxc/drivers/data.py", line 74, in obs
add_density((density.split('/')[-1]).split('.')[0], file, data, system, method, override)
File "/home/egezer/neuralxc/neuralxc/datastructures/hdf5.py", line 19, in add_density
return add_data(key, *args, **kwargs)
File "/home/egezer/neuralxc/neuralxc/datastructures/hdf5.py", line 97, in add_data
create_dataset()
File "/home/egezer/neuralxc/neuralxc/datastructures/hdf5.py", line 94, in create_dataset
cg.create_dataset(which, data=data)
File "/home/egezer/.local/lib/python3.10/site-packages/h5py/_hl/group.py", line 139, in create_dataset
self[name] = dset
File "/home/egezer/.local/lib/python3.10/site-packages/h5py/_hl/group.py", line 371, in __setitem__
h5o.link(obj.id, self.id, name, lcpl=lcpl, lapl=self._lapl)
File "h5py/_objects.pyx", line 54, in h5py._objects.with_phil.wrapper
File "h5py/_objects.pyx", line 55, in h5py._objects.with_phil.wrapper
File "h5py/h5o.pyx", line 202, in h5py.h5o.link
OSError: Unable to create link (name already exists)
The text was updated successfully, but these errors were encountered:
The text was updated successfully, but these errors were encountered: